def prepare_data():
food_df = pd.DataFrame(
[
("BEEF", 3.59, 2, 10),
("CHK", 2.59, 2, 10),
("FISH", 2.29, 2, 10),
("HAM", 2.89, 2, 10),
("MCH", 1.89, 2, 10),
("MTL", 1.99, 2, 10),
("SPG", 1.99, 2, 10),
("TUR", 2.49, 2, 10),
],
columns=["FOOD", "cost", "f_min", "f_max"],
).set_index("FOOD")
# Create a pandas.DataFrame with data for n_min, n_max
nutr_df = pd.DataFrame(
[
("A", 700, 20000),
("C", 700, 20000),
("B1", 700, 20000),
("B2", 700, 20000),
("NA", 0, 50000),
("CAL", 16000, 24000),
],
columns=["NUTR", "n_min", "n_max"],
).set_index("NUTR")
amt_df = pd.DataFrame(
np.array(
[
[60, 8, 8, 40, 15, 70, 25, 60],
[20, 0, 10, 40, 35, 30, 50, 20],
[10, 20, 15, 35, 15, 15, 25, 15],
[15, 20, 10, 10, 15, 15, 15, 10],
[928, 2180, 945, 278, 1182, 896, 1329, 1397],
[295, 770, 440, 430, 315, 400, 379, 450],
]
),
columns=food_df.index.to_list(),
index=nutr_df.index.to_list(),
)
return food_df, nutr_df, amt_df