reproject_interp¶
- reproject.reproject_interp(input_data, output_projection, shape_out=None, hdu_in=0, order='bilinear', independent_celestial_slices=False, output_array=None, return_footprint=True, roundtrip_coords=True)[source]¶
Reproject data to a new projection using interpolation (this is typically the fastest way to reproject an image).
The output pixel grid is transformed to the input pixel grid, and the data values in
input_datainterpolated on to these coordinates to get the reprojected data on the output grid.- Parameters:
- input_data
The input data to reproject. This can be:
The name of a FITS file
An
HDUListobjectAn image HDU object such as a
PrimaryHDU,ImageHDU, orCompImageHDUinstanceA tuple where the first element is a
ndarrayand the second element is either aWCSor aHeaderobjectAn
NDDataobject from which the.dataand.wcsattributes will be used as the input data.
- output_projection
WCSorHeader The output projection, which can be either a
WCSor aHeaderinstance.- shape_outtuple, optional
If
output_projectionis aWCSinstance, the shape of the output data should be specified separately.- hdu_inint or str, optional
If
input_datais a FITS file or anHDUListinstance, specifies the HDU to use.- orderint or str, optional
The order of the interpolation. This can be any of the following strings:
‘nearest-neighbor’
‘bilinear’
‘biquadratic’
‘bicubic’
or an integer. A value of
0indicates nearest neighbor interpolation.- output_arrayNone or
ndarray An array in which to store the reprojected data. This can be any numpy array including a memory map, which may be helpful when dealing with extremely large files.
- return_footprintbool
Whether to return the footprint in addition to the output array.
- roundtrip_coordsbool
Whether to verify that coordinate transformations are defined in both directions.
- Returns: