Gaussian2D¶
- class astropy.modeling.functional_models.Gaussian2D(amplitude=1, x_mean=0, y_mean=0, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, **kwargs)[source]¶
Bases:
Fittable2DModelTwo dimensional Gaussian model.
- Parameters:
- amplitude
floatorQuantity. Amplitude (peak value) of the Gaussian.
- x_mean
floatorQuantity. Mean of the Gaussian in x.
- y_mean
floatorQuantity. Mean of the Gaussian in y.
- x_stddev
floatorQuantityor None. Standard deviation of the Gaussian in x before rotating by theta. Must be None if a covariance matrix (
cov_matrix) is provided. If nocov_matrixis given,Nonemeans the default value (1).- y_stddev
floatorQuantityor None. Standard deviation of the Gaussian in y before rotating by theta. Must be None if a covariance matrix (
cov_matrix) is provided. If nocov_matrixis given,Nonemeans the default value (1).- theta
floatorQuantity, optional. The rotation angle as an angular quantity (
QuantityorAngle) or a value in radians (as a float). The rotation angle increases counterclockwise. Must beNoneif a covariance matrix (cov_matrix) is provided. If nocov_matrixis given,Nonemeans the default value (0).- cov_matrix
ndarray, optional A 2x2 covariance matrix. If specified, overrides the
x_stddev,y_stddev, andthetadefaults.
- amplitude
- Other Parameters:
- fixed
adict, optional A dictionary
{parameter_name: boolean}of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively thefixedproperty of a parameter may be used.- tied
dict, optional A dictionary
{parameter_name: callable}of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively thetiedproperty of a parameter may be used.- bounds
dict, optional A dictionary
{parameter_name: value}of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively, theminandmaxproperties of a parameter may be used.- eqcons
list, optional A list of functions of length
nsuch thateqcons[j](x0,*args) == 0.0in a successfully optimized problem.- ineqcons
list, optional A list of functions of length
nsuch thatieqcons[j](x0,*args) >= 0.0is a successfully optimized problem.
- fixed
See also
Notes
Either all or none of input
x, y,[x,y]_meanand[x,y]_stddevmust be provided consistently with compatible units or as unitless numbers.Model formula:
\[f(x, y) = A e^{-a\left(x - x_{0}\right)^{2} -b\left(x - x_{0}\right) \left(y - y_{0}\right) -c\left(y - y_{0}\right)^{2}}\]Using the following definitions:
\[ \begin{align}\begin{aligned}a = \left(\frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)\\b = \left(\frac{\sin{\left (2 \theta \right )}}{2 \sigma_{x}^{2}} - \frac{\sin{\left (2 \theta \right )}}{2 \sigma_{y}^{2}}\right)\\c = \left(\frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)\end{aligned}\end{align} \]- If using a
cov_matrix, the model is of the form: - \[f(x, y) = A e^{-0.5 \left( \vec{x} - \vec{x}_{0}\right)^{T} \Sigma^{-1} \left(\vec{x} - \vec{x}_{0} \right)}\]
where \(\vec{x} = [x, y]\), \(\vec{x}_{0} = [x_{0}, y_{0}]\), and \(\Sigma\) is the covariance matrix:
\[\begin{split}\Sigma = \left(\begin{array}{ccc} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{array}\right)\end{split}\]\(\rho\) is the correlation between
xandy, which should be between -1 and +1. Positive correlation corresponds to athetain the range 0 to 90 degrees. Negative correlation corresponds to athetain the range of 0 to -90 degrees.See [1] for more details about the 2D Gaussian function.
References
Attributes Summary
This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
Noneif any units are accepted).Names of the parameters that describe models of this type.
Gaussian full width at half maximum in X.
Gaussian full width at half maximum in Y.
Methods Summary
evaluate(x, y, amplitude, x_mean, y_mean, ...)Two dimensional Gaussian function.
fit_deriv(x, y, amplitude, x_mean, y_mean, ...)Two dimensional Gaussian function derivative with respect to parameters.
Attributes Documentation
- amplitude = Parameter('amplitude', value=1.0)¶
- input_units¶
- param_names = ('amplitude', 'x_mean', 'y_mean', 'x_stddev', 'y_stddev', 'theta')¶
Names of the parameters that describe models of this type.
The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree.
When defining a custom model class the value of this attribute is automatically set by the
Parameterattributes defined in the class body.
- theta = Parameter('theta', value=0.0)¶
- x_fwhm¶
Gaussian full width at half maximum in X.
- x_mean = Parameter('x_mean', value=0.0)¶
- x_stddev = Parameter('x_stddev', value=1.0)¶
- y_fwhm¶
Gaussian full width at half maximum in Y.
- y_mean = Parameter('y_mean', value=0.0)¶
- y_stddev = Parameter('y_stddev', value=1.0)¶
Methods Documentation