simple_norm¶
- astropy.visualization.mpl_normalize.simple_norm(data, stretch='linear', power=1.0, asinh_a=0.1, min_cut=None, max_cut=None, min_percent=None, max_percent=None, percent=None, clip=False, log_a=1000, invalid=-1.0, sinh_a=0.3)[source]¶
Return a Normalization class that can be used for displaying images with Matplotlib.
This function enables only a subset of image stretching functions available in
ImageNormalize.This function is used by the
astropy.visualization.scripts.fits2bitmapscript.- Parameters:
- data
ndarray The image array.
- stretch{‘linear’, ‘sqrt’, :ref: ‘power’, log’, ‘asinh’, ‘sinh’}, optional
The stretch function to apply to the image. The default is ‘linear’.
- power
float, optional The power index for
stretch='power'. The default is 1.0.- asinh_a
float, optional For
stretch='asinh', the value where the asinh curve transitions from linear to logarithmic behavior, expressed as a fraction of the normalized image. Must be in the range between 0 and 1. The default is 0.1.- min_cut
float, optional The pixel value of the minimum cut level. Data values less than
min_cutwill set tomin_cutbefore stretching the image. The default is the image minimum.min_cutoverridesmin_percent.- max_cut
float, optional The pixel value of the maximum cut level. Data values greater than
min_cutwill set tomin_cutbefore stretching the image. The default is the image maximum.max_cutoverridesmax_percent.- min_percent
float, optional The percentile value used to determine the pixel value of minimum cut level. The default is 0.0.
min_percentoverridespercent.- max_percent
float, optional The percentile value used to determine the pixel value of maximum cut level. The default is 100.0.
max_percentoverridespercent.- percent
float, optional The percentage of the image values used to determine the pixel values of the minimum and maximum cut levels. The lower cut level will set at the
(100 - percent) / 2percentile, while the upper cut level will be set at the(100 + percent) / 2percentile. The default is 100.0.percentis ignored if eithermin_percentormax_percentis input.- clipbool, optional
If
True, data values outside the [0:1] range are clipped to the [0:1] range.- log_a
float, optional The log index for
stretch='log'. The default is 1000.- invalid
Noneorfloat, optional Value to assign NaN values generated by the normalization. NaNs in the input
dataarray are not changed. For matplotlib normalization, theinvalidvalue should map to the matplotlib colormap “under” value (i.e., any finite value < 0). IfNone, then NaN values are not replaced. This keyword has no effect ifclip=True.- sinh_a
float, optional The scaling parameter for
stretch='sinh'. The default is 0.3.
- data
- Returns:
- result
ImageNormalizeinstance An
ImageNormalizeinstance that can be used for displaying images with Matplotlib.
- result