DogBoxLSQFitter#
- class astropy.modeling.fitting.DogBoxLSQFitter(calc_uncertainties=False, use_min_max_bounds=False)[source]#
Bases:
_NLLSQFitter
DogBox algorithm and least squares statistic.
- Parameters:
- calc_uncertaintiesbool
If the covarience matrix should be computed and set in the fit_info. Default: False
- use_min_max_bounds: bool
If the set parameter bounds for a model will be enforced each given parameter while fitting via a simple min/max condition. A True setting will replicate how LevMarLSQFitter enforces bounds. Default: False
- Attributes:
- fit_info
A
scipy.optimize.OptimizeResult
class which contains all of the most recent fit information
Attributes Summary
The constraint types supported by this fitter type.
Methods Summary
__call__
(model, x, y[, z, weights, maxiter, ...])Fit data to this model.
objective_function
(fps, *args)Function to minimize.
Attributes Documentation
- supported_constraints = ['fixed', 'tied', 'bounds']#
The constraint types supported by this fitter type.
Methods Documentation
- __call__(model, x, y, z=None, weights=None, maxiter=100, acc=1e-07, epsilon=1.4901161193847656e-08, estimate_jacobian=False, filter_non_finite=False)#
Fit data to this model.
- Parameters:
- model
FittableModel
model to fit to x, y, z
- x
array
input coordinates
- y
array
input coordinates
- z
array
, optional input coordinates
- weights
array
, optional Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma.
Changed in version 5.3: Calculate parameter covariances while accounting for
weights
as “absolute” inverse uncertainties. To recover the old behavior, chooseweights=None
.- maxiter
int
maximum number of iterations
- acc
float
Relative error desired in the approximate solution
- epsilon
float
A suitable step length for the forward-difference approximation of the Jacobian (if model.fjac=None). If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.
- estimate_jacobianbool
If False (default) and if the model has a fit_deriv method, it will be used. Otherwise the Jacobian will be estimated. If True, the Jacobian will be estimated in any case.
- equivalencies
list
orNone
, optional, keyword-only List of additional equivalencies that are should be applied in case x, y and/or z have units. Default is None.
- filter_non_finitebool, optional
Whether or not to filter data with non-finite values. Default is False
- model
- Returns:
- model_copy
FittableModel
a copy of the input model with parameters set by the fitter
- model_copy