SLSQPLSQFitter#
- class astropy.modeling.fitting.SLSQPLSQFitter[source]#
Bases:
Fitter
Sequential Least Squares Programming (SLSQP) optimization algorithm and least squares statistic.
- Raises:
ModelLinearityError
A linear model is passed to a nonlinear fitter
Notes
See also the
SLSQP
optimizer.Attributes Summary
Methods Summary
__call__
(model, x, y[, z, weights])Fit data to this model.
objective_function
(fps, *args)Function to minimize.
Attributes Documentation
- supported_constraints = ['bounds', 'eqcons', 'ineqcons', 'fixed', 'tied']#
Methods Documentation
- __call__(model, x, y, z=None, weights=None, **kwargs)[source]#
Fit data to this model.
- Parameters:
- model
FittableModel
model to fit to x, y, z
- x
array
input coordinates
- y
array
input coordinates
- z
array
, optional input coordinates
- weights
array
, optional Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma.
- kwargs
dict
optional keyword arguments to be passed to the optimizer or the statistic
- verblevel
int
0-silent 1-print summary upon completion, 2-print summary after each iteration
- maxiter
int
maximum number of iterations
- epsilon
float
the step size for finite-difference derivative estimates
- acc
float
Requested accuracy
- equivalencies
list
orNone
, optional, keyword-only List of additional equivalencies that are should be applied in case x, y and/or z have units. Default is None.
- model
- Returns:
- model_copy
FittableModel
a copy of the input model with parameters set by the fitter
- model_copy