bootstrap#
- astropy.stats.bootstrap(data, bootnum=100, samples=None, bootfunc=None)[source]#
Performs bootstrap resampling on numpy arrays.
Bootstrap resampling is used to understand confidence intervals of sample estimates. This function returns versions of the dataset resampled with replacement (“case bootstrapping”). These can all be run through a function or statistic to produce a distribution of values which can then be used to find the confidence intervals.
- Parameters:
- data
ndarray
N-D array. The bootstrap resampling will be performed on the first index, so the first index should access the relevant information to be bootstrapped.
- bootnum
int
, optional Number of bootstrap resamples
- samples
int
, optional Number of samples in each resample. The default
None
sets samples to the number of datapoints- bootfuncfunction, optional
Function to reduce the resampled data. Each bootstrap resample will be put through this function and the results returned. If
None
, the bootstrapped data will be returned
- data
- Returns:
- boot
ndarray
If bootfunc is None, then each row is a bootstrap resample of the data. If bootfunc is specified, then the columns will correspond to the outputs of bootfunc.
- boot
Examples
Obtain a twice resampled array:
>>> from astropy.stats import bootstrap >>> import numpy as np >>> from astropy.utils import NumpyRNGContext >>> bootarr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) >>> with NumpyRNGContext(1): ... bootresult = bootstrap(bootarr, 2) ... >>> bootresult array([[6., 9., 0., 6., 1., 1., 2., 8., 7., 0.], [3., 5., 6., 3., 5., 3., 5., 8., 8., 0.]]) >>> bootresult.shape (2, 10)
Obtain a statistic on the array
>>> with NumpyRNGContext(1): ... bootresult = bootstrap(bootarr, 2, bootfunc=np.mean) ... >>> bootresult array([4. , 4.6])
Obtain a statistic with two outputs on the array
>>> test_statistic = lambda x: (np.sum(x), np.mean(x)) >>> with NumpyRNGContext(1): ... bootresult = bootstrap(bootarr, 3, bootfunc=test_statistic) >>> bootresult array([[40. , 4. ], [46. , 4.6], [35. , 3.5]]) >>> bootresult.shape (3, 2)
Obtain a statistic with two outputs on the array, keeping only the first output
>>> bootfunc = lambda x:test_statistic(x)[0] >>> with NumpyRNGContext(1): ... bootresult = bootstrap(bootarr, 3, bootfunc=bootfunc) ... >>> bootresult array([40., 46., 35.]) >>> bootresult.shape (3,)