ImageNormalize#
- class astropy.visualization.ImageNormalize(data=None, interval=None, vmin=None, vmax=None, stretch=<astropy.visualization.stretch.LinearStretch object>, clip=False, invalid=-1.0)[source]#
Bases:
NormalizeNormalization class to be used with Matplotlib.
- Parameters:
- data
ndarray, optional The image array. This input is used only if
intervalis also input.dataandintervalare used to compute the vmin and/or vmax values only ifvminorvmaxare not input.- interval
BaseIntervalsubclass instance, optional The interval object to apply to the input
datato determine thevminandvmaxvalues. This input is used only ifdatais also input.dataandintervalare used to compute the vmin and/or vmax values only ifvminorvmaxare not input.- vmin, vmax
float, optional The minimum and maximum levels to show for the data. The
vminandvmaxinputs override any calculated values from theintervalanddatainputs.- stretch
BaseStretchsubclass instance The stretch object to apply to the data. The default is
LinearStretch.- clipbool, optional
If
True, data values outside the [0:1] range are clipped to the [0:1] range.- invalid
Noneorfloat, optional Value to assign NaN values generated by this class. NaNs in the input
dataarray are not changed. For matplotlib normalization, theinvalidvalue should map to the matplotlib colormap “under” value (i.e., any finite value < 0). IfNone, then NaN values are not replaced. This keyword has no effect ifclip=True.
- data
- Parameters:
- vmin, vmax
floatorNone If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)callsautoscale_None(A).- clipbool, default:
False Determines the behavior for mapping values outside the range
[vmin, vmax].If clipping is off, values outside the range
[vmin, vmax]are also transformed linearly, resulting in values outside[0, 1]. For a standard use with colormaps, this behavior is desired because colormaps mark these outside values with specific colors for over or under.If
Truevalues falling outside the range[vmin, vmax], are mapped to 0 or 1, whichever is closer. This makes these values indistinguishable from regular boundary values and can lead to misinterpretation of the data.
- vmin, vmax
Notes
Returns 0 if
vmin == vmax.Methods Summary
__call__(values[, clip, invalid])Transform values using this normalization.
inverse(values[, invalid])Methods Documentation
- __call__(values, clip=None, invalid=None)[source]#
Transform values using this normalization.
- Parameters:
- valuesarray_like
The input values.
- clipbool, optional
If
True, values outside the [0:1] range are clipped to the [0:1] range. IfNonethen theclipvalue from theImageNormalizeinstance is used (the default of which isFalse).- invalid
Noneorfloat, optional Value to assign NaN values generated by this class. NaNs in the input
dataarray are not changed. For matplotlib normalization, theinvalidvalue should map to the matplotlib colormap “under” value (i.e., any finite value < 0). IfNone, then theImageNormalizeinstance value is used. This keyword has no effect ifclip=True.