ECSV Format#
The Enhanced Character-Separated Values (ECSV) format can be used to
write astropy
Table
or QTable
datasets to
a text-only human readable data file and then read the table back without loss
of information. The format stores column specifications like unit and data type
along with table metadata by using a YAML header data structure. The
actual tabular data are stored in a standard character separated values (CSV)
format, giving compatibility with a wide variety of non-specialized CSV table
readers.
Attention
The ECSV format is the recommended way to store Table data in a human-readable ASCII file. This includes use cases from informal use in science research to production pipelines and data systems.
In addition to Python, ECSV is supported in TOPCAT and in the Java STIL library.
Usage#
When writing in the ECSV format there are only two choices for the delimiter,
either space or comma, with space being the default. Any other value of
delimiter
will give an error. For reading the delimiter is specified within
the file itself.
Apart from the delimiter, the only other applicable read/write arguments are
names
, include_names
, and exclude_names
. All other arguments will be
either ignored or raise an error.
Simple Table#
The following writes a table as a simple space-delimited file. The
ECSV format is auto-selected due to .ecsv
suffix:
>>> import numpy as np
>>> from astropy.table import Table
>>> data = Table()
>>> data['a'] = np.array([1, 2], dtype=np.int8)
>>> data['b'] = np.array([1, 2], dtype=np.float32)
>>> data['c'] = np.array(['hello', 'world'])
>>> data.write('my_data.ecsv')
The contents of my_data.ecsv
are shown below:
# %ECSV 1.0
# ---
# datatype:
# - {name: a, datatype: int8}
# - {name: b, datatype: float32}
# - {name: c, datatype: string}
# schema: astropy-2.0
a b c
1 1.0 hello
2 2.0 world
The ECSV header is the section prefixed by the #
comment character. An ECSV
file must start with the %ECSV <version>
line. The datatype
element
defines the list of columns and the schema
relates to astropy-specific
extensions that are used for writing Mixin Columns.
Masked Data#
You can write masked (or “missing”) data in the ECSV format in two different ways, either using an empty string to represent missing values or by splitting the masked columns into separate data and mask columns.
Empty String#
The first (default) way uses an empty string as a marker in place of
masked values. This is a bit more common outside of astropy
and does not
require any astropy-specific extensions.
>>> from astropy.table import MaskedColumn
>>> t = Table()
>>> t['x'] = MaskedColumn([1.0, 2.0, 3.0], unit='m', dtype='float32')
>>> t['x'][1] = np.ma.masked
>>> t['y'] = MaskedColumn([False, True, False], dtype='bool')
>>> t['y'][0] = np.ma.masked
>>> t.write('my_data.ecsv', format='ascii.ecsv', overwrite=True)
The contents of my_data.ecsv
are shown below:
# %ECSV 1.0
# ---
# datatype:
# - {name: x, unit: m, datatype: float32}
# - {name: y, datatype: bool}
# schema: astropy-2.0
x y
1.0 ""
"" True
3.0 False
To read this back, you would run the following:
>>> Table.read('my_data.ecsv')
<Table length=3>
x y
m
float32 bool
------- -----
1.0 --
-- True
3.0 False
Data + Mask#
The second way is to tell the writer to break any masked column into a data
column and a mask column by supplying the serialize_method='data_mask'
argument:
>>> t.write('my_data.ecsv', serialize_method='data_mask', overwrite=True)
There are two main reasons you might want to do this:
Storing the data “under the mask” instead of replacing it with an empty string.
Writing a string column that contains empty strings which are not masked.
The contents of my_data.ecsv
are shown below. First notice that there are
two new columns x.mask
and y.mask
that have been added, and these explicitly
record the mask values for those columns. Next notice now that the ECSV
header is a bit more complex and includes the astropy-specific extensions that
tell the reader how to interpret the plain CSV columns x, x.mask, y, y.mask
and reassemble them back into the appropriate masked columns.
# %ECSV 1.0
# ---
# datatype:
# - {name: x, unit: m, datatype: float32}
# - {name: x.mask, datatype: bool}
# - {name: y, datatype: bool}
# - {name: y.mask, datatype: bool}
# meta: !!omap
# - __serialized_columns__:
# x:
# __class__: astropy.table.column.MaskedColumn
# data: !astropy.table.SerializedColumn {name: x}
# mask: !astropy.table.SerializedColumn {name: x.mask}
# y:
# __class__: astropy.table.column.MaskedColumn
# data: !astropy.table.SerializedColumn {name: y}
# mask: !astropy.table.SerializedColumn {name: y.mask}
# schema: astropy-2.0
x x.mask y y.mask
1.0 False False True
2.0 True True False
3.0 False False False
Note
For the security minded, the __class__
value must within an allowed list
of astropy classes that are trusted by the reader. You cannot use an
arbitrary class here.
Per-column control#
In rare cases it may be necessary to specify the serialization method for each column individually. This is shown in the example below:
>>> from astropy.table.table_helpers import simple_table
>>> t = simple_table(masked=True)
>>> t['c'][0] = "" # Valid empty string in data
>>> t
<Table masked=True length=3>
a b c
int64 float64 str1
----- ------- ----
-- 1.0
2 2.0 --
3 -- e
Now we tell ECSV writer to output separate data and mask columns for the
string column 'c'
:
>>> t['c'].info.serialize_method['ecsv'] = 'data_mask'
>>> ascii.write(t, format='ecsv')
# %ECSV 1.0
# ---
# datatype:
# - {name: a, datatype: int64}
# - {name: b, datatype: float64}
# - {name: c, datatype: string}
# - {name: c.mask, datatype: bool}
# meta: !!omap
# - __serialized_columns__:
# c:
# __class__: astropy.table.column.MaskedColumn
# data: !astropy.table.SerializedColumn {name: c}
# mask: !astropy.table.SerializedColumn {name: c.mask}
# schema: astropy-2.0
a b c c.mask
"" 1.0 "" False
2 2.0 d True
3 "" e False
When you read this back in, both the empty (zero-length) string and the masked
'd'
value in the column 'c'
will be preserved.
Mixin Columns#
It is possible to store not only standard Column
and
MaskedColumn
objects to ECSV but also the following
Mixin Columns:
Coordinate representation types such as
astropy.coordinates.SphericalRepresentation
In general, a mixin column may contain multiple data components as well as
object attributes beyond the standard Column
attributes like
format
or description
. Storing such mixin columns is done by replacing
the mixin column with column(s) representing the underlying data component(s)
and then inserting metadata which informs the reader of how to reconstruct the
original column. For example, a SkyCoord
mixin column in
'spherical'
representation would have data attributes ra
, dec
,
distance
, along with object attributes like representation_type
or
frame
.
This example demonstrates writing a QTable
that has Time
and SkyCoord
mixin columns:
>>> from astropy.coordinates import SkyCoord
>>> import astropy.units as u
>>> from astropy.table import QTable
>>> sc = SkyCoord(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg)
>>> sc.info.description = 'flying circus'
>>> q = [1, 2] * u.m
>>> q.info.format = '.2f'
>>> t = QTable()
>>> t['c'] = [1, 2]
>>> t['q'] = q
>>> t['sc'] = sc
>>> t.write('my_data.ecsv')
The contents of my_data.ecsv
are below:
# %ECSV 1.0
# ---
# datatype:
# - {name: c, datatype: int64}
# - {name: q, unit: m, datatype: float64, format: .2f}
# - {name: sc.ra, unit: deg, datatype: float64}
# - {name: sc.dec, unit: deg, datatype: float64}
# meta: !!omap
# - __serialized_columns__:
# q:
# __class__: astropy.units.quantity.Quantity
# __info__: {format: .2f}
# unit: !astropy.units.Unit {unit: m}
# value: !astropy.table.SerializedColumn {name: q}
# sc:
# __class__: astropy.coordinates.sky_coordinate.SkyCoord
# __info__: {description: flying circus}
# dec: !astropy.table.SerializedColumn
# __class__: astropy.coordinates.angles.Latitude
# unit: &id001 !astropy.units.Unit {unit: deg}
# value: !astropy.table.SerializedColumn {name: sc.dec}
# frame: icrs
# ra: !astropy.table.SerializedColumn
# __class__: astropy.coordinates.angles.Longitude
# unit: *id001
# value: !astropy.table.SerializedColumn {name: sc.ra}
# wrap_angle: !astropy.coordinates.Angle
# unit: *id001
# value: 360.0
# representation_type: spherical
# schema: astropy-2.0
c q sc.ra sc.dec
1 1.0 1.0 3.0
2 2.0 2.0 4.0
The '__class__'
keyword gives the fully-qualified class name and must be
one of the specifically allowed astropy
classes. There is no option to add
user-specified allowed classes. The '__info__'
keyword contains values for
standard Column
attributes like description
or format
,
for any mixin columns that are represented by more than one serialized column.
Multidimensional Columns#
Using ECSV it is possible to write a table that contains multidimensional columns (both masked and unmasked). This is done by encoding each element as a string using JSON. This functionality works for all column types that are supported by ECSV including Mixin Columns. This capability is added in astropy 4.3 and ECSV version 1.0.
We start by defining a table with 2 rows where each element in the second column
'b'
is itself a 3x2 array:
>>> t = Table()
>>> t['a'] = ['x', 'y']
>>> t['b'] = np.arange(12, dtype=np.float64).reshape(2, 3, 2)
>>> t
<Table length=2>
a b
str1 float64[3,2]
---- ------------
x 0.0 .. 5.0
y 6.0 .. 11.0
>>> t['b'][0]
array([[0., 1.],
[2., 3.],
[4., 5.]])
Now we can write this to ECSV and observe how the N-d column 'b'
has been
written as a string with datatype: string
. Notice also that the column
descriptor for the column includes the new subtype: float64[3,2]
attribute
specifying the type and shape of each item.
>>> ascii.write(t, format='ecsv')
# %ECSV 1.0
# ---
# datatype:
# - {name: a, datatype: string}
# - {name: b, datatype: string, subtype: 'float64[3,2]'}
# schema: astropy-2.0
a b
x [[0.0,1.0],[2.0,3.0],[4.0,5.0]]
y [[6.0,7.0],[8.0,9.0],[10.0,11.0]]
When you read this back in, the sequence of JSON-encoded column items are then decoded using JSON back into the original N-d column.
Variable-length arrays#
ECSV supports storing multidimensional columns is when the length of each array
element may vary. This data structure is supported in the FITS standard. While numpy
does not
natively support variable-length arrays, it is possible to represent such a
structure using an object-type array of typed np.ndarray
objects. This is how
the astropy
FITS reader outputs a variable-length array.
This capability is added in astropy 4.3 and ECSV version 1.0.
Most commonly variable-length arrays have a 1-d array in each cell of the
column. You might a column with 1-d np.ndarray
cells having lengths of 2, 5,
and 3 respectively.
The ECSV standard and astropy
also supports arbitrary N-d arrays in each
cell, where all dimensions except the last one must match. For instance you
could have a column with np.ndarray
cells having shapes of (4,4,2)
,
(4,4,5)
, and (4,4,3)
respectively.
The example below shows writing a variable-length 1-d array to ECSV. Notice the
new ECSV column attribute subtype: 'int64[null]'
. The [null]
indicates a
variable length for the one dimension. If we had been writing the N-d example
above the subtype would have been int64[4,4,null]
.
>>> t = Table()
>>> t['a'] = np.empty(3, dtype=object)
>>> t['a'] = [np.array([1, 2], dtype=np.int64),
... np.array([3, 4, 5], dtype=np.int64),
... np.array([6, 7, 8, 9], dtype=np.int64)]
>>> ascii.write(t, format='ecsv')
# %ECSV 1.0
# ---
# datatype:
# - {name: a, datatype: string, subtype: 'int64[null]'}
# schema: astropy-2.0
a
[1,2]
[3,4,5]
[6,7,8,9]
Object arrays#
ECSV can store object-type columns with simple Python objects consisting of
dict
, list
, str
, int
, float
, bool
and None
elements.
More precisely, any object that can be serialized to JSON using the standard library json package is supported.
The example below shows writing an object array to ECSV. Because JSON requires
a double-quote around strings, and because ECSV requires ""
to represent
a double-quote within a string, one tends to get double-double quotes in this
representation.
>>> t = Table()
>>> t['a'] = np.array([{'a': 1},
... {'b': [2.5, None]},
... True], dtype=object)
>>> ascii.write(t, format='ecsv')
# %ECSV 1.0
# ---
# datatype:
# - {name: a, datatype: string, subtype: json}
# schema: astropy-2.0
a
"{""a"":1}"
"{""b"":[2.5,null]}"
true