NDData#
Overview#
NDData is based on numpy.ndarray-like data with
additional meta attributes:
metafor general metadataunitrepresents the physical unit of the datauncertaintyfor the uncertainty of the datamaskindicates invalid points in the datawcsrepresents the relationship between the data grid and world coordinatespsfholds an image representation of the point spread function (PSF)
Each of these attributes can be set during initialization or directly on the
instance. Only the data cannot be directly set after creating the instance.
Data#
The data is the base of NDData and is required to be
numpy.ndarray-like. It is the only property that is required to create an
instance and it cannot be directly set on the instance.
Example#
To create an instance:
>>> import numpy as np
>>> from astropy.nddata import NDData
>>> array = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
>>> ndd = NDData(array)
>>> ndd
NDData([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
And access by the data attribute:
>>> ndd.data
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
As already mentioned, it is not possible to set the data directly. So
ndd.data = np.arange(9) will raise an exception. But the data can be
modified in place:
>>> ndd.data[1,1] = 100
>>> ndd.data
array([[ 0, 1, 0],
[ 1, 100, 1],
[ 0, 1, 0]])
Data During Initialization#
During initialization it is possible to provide data that is not a
numpy.ndarray but convertible to one.
Examples#
To provide data that is convertible to a numpy.ndarray, you can pass a list
containing numerical values:
>>> alist = [1, 2, 3, 4]
>>> ndd = NDData(alist)
>>> ndd.data # data will be a numpy-array:
array([1, 2, 3, 4])
A nested list or tuple is possible, but if these contain non-numerical
values the conversion might fail.
Besides input that is convertible to such an array, you can also use the
data parameter to pass implicit additional information. For example, if the
data is another NDData object it implicitly uses its
properties:
>>> ndd = NDData(ndd, unit = 'm')
>>> ndd2 = NDData(ndd)
>>> ndd2.data # It has the same data as ndd
array([1, 2, 3, 4])
>>> ndd2.unit # but it also has the same unit as ndd
Unit("m")
Another possibility is to use a Quantity as a data
parameter:
>>> import astropy.units as u
>>> quantity = np.ones(3) * u.cm # this will create a Quantity
>>> ndd3 = NDData(quantity)
>>> ndd3.data
array([1., 1., 1.])
>>> ndd3.unit
Unit("cm")
Or a numpy.ma.MaskedArray:
>>> masked_array = np.ma.array([5,10,15], mask=[False, True, False])
>>> ndd4 = NDData(masked_array)
>>> ndd4.data
array([ 5, 10, 15])
>>> ndd4.mask
array([False, True, False]...)
If such an implicitly passed property conflicts with an explicit parameter, the explicit parameter will be used and an info message will be issued:
>>> quantity = np.ones(3) * u.cm
>>> ndd6 = NDData(quantity, unit='m')
INFO: overwriting Quantity's current unit with specified unit. [astropy.nddata.nddata]
>>> ndd6.data
array([0.01, 0.01, 0.01])
>>> ndd6.unit
Unit("m")
The unit of the Quantity is being ignored and the unit is set
to the explicitly passed one.
It might be possible to pass other classes as a data parameter as long as
they have the properties shape, dtype, __getitem__, and
__array__.
The purpose of this mechanism is to allow considerable flexibility in the
objects used to store the data while providing a useful default (numpy
array).
Mask#
The mask is being used to indicate if data points are valid or invalid.
NDData does not restrict this mask in any way but it is
expected to follow the numpy.ma.MaskedArray convention in that the mask:
Returns
Truefor data points that are considered invalid.Returns
Falsefor those points that are valid.
Examples#
One possibility is to create a mask by using numpy’s comparison operators:
>>> array = np.array([0, 1, 4, 0, 2])
>>> mask = array == 0 # Mask points containing 0
>>> mask
array([ True, False, False, True, False]...)
>>> other_mask = array > 1 # Mask points with a value greater than 1
>>> other_mask
array([False, False, True, False, True]...)
And initialize the NDData instance using the mask
parameter:
>>> ndd = NDData(array, mask=mask)
>>> ndd.mask
array([ True, False, False, True, False]...)
Or by replacing the mask:
>>> ndd.mask = other_mask
>>> ndd.mask
array([False, False, True, False, True]...)
There is no requirement that the mask actually be a numpy array; for
example, a function which evaluates a mask value as needed is acceptable as
long as it follows the convention that True indicates a value that should
be ignored.
Unit#
The unit represents the unit of the data values. It is required to be
Unit-like or a string that can be converted to such a
Unit:
>>> import astropy.units as u
>>> ndd = NDData([1, 2, 3, 4], unit="meter") # using a string
>>> ndd.unit
Unit("m")
- ..note::
Setting the
uniton an instance is not possible.
Uncertainties#
The uncertainty represents an arbitrary representation of the error of the
data values. To indicate which kind of uncertainty representation is used, the
uncertainty should have an uncertainty_type property. If no such
property is found it will be wrapped inside a
UnknownUncertainty.
The uncertainty_type should follow the StdDevUncertainty
convention in that it returns a short string like "std" for an uncertainty
given in standard deviation. Other examples are
VarianceUncertainty and InverseVariance.
Examples#
Like the other properties the uncertainty can be set during
initialization:
>>> from astropy.nddata import StdDevUncertainty, InverseVariance
>>> array = np.array([10, 7, 12, 22])
>>> uncert = StdDevUncertainty(np.sqrt(array))
>>> ndd = NDData(array, uncertainty=uncert)
>>> ndd.uncertainty
StdDevUncertainty([3.16227766, 2.64575131, 3.46410162, 4.69041576])
Or on the instance directly:
>>> other_uncert = StdDevUncertainty([2,2,2,2])
>>> ndd.uncertainty = other_uncert
>>> ndd.uncertainty
StdDevUncertainty([2, 2, 2, 2])
But it will print an info message if there is no uncertainty_type:
>>> ndd.uncertainty = np.array([5, 1, 2, 10])
INFO: uncertainty should have attribute uncertainty_type. [astropy.nddata.nddata]
>>> ndd.uncertainty
UnknownUncertainty([ 5, 1, 2, 10])
It is also possible to convert between uncertainty types:
>>> uncert.represent_as(InverseVariance)
InverseVariance([0.1 , 0.14285714, 0.08333333, 0.04545455])
WCS#
The wcs should contain a mapping from the gridded data to world
coordinates. There are no restrictions placed on the property currently but it
may be restricted to an WCS object or a more generalized WCS
object in the future.
Note
Like the unit the wcs cannot be set on an instance.
Metadata#
The meta property contains all further meta information that does not fit
any other property.
Examples#
If the meta property is given it must be dict-like:
>>> ndd = NDData([1,2,3], meta={'observer': 'myself'})
>>> ndd.meta
{'observer': 'myself'}
dict-like means it must be a mapping from some keys to some values. This
also includes Header objects:
>>> from astropy.io import fits
>>> header = fits.Header()
>>> header['observer'] = 'Edwin Hubble'
>>> ndd = NDData(np.zeros([10, 10]), meta=header)
>>> ndd.meta['observer']
'Edwin Hubble'
If the meta property is not provided or explicitly set to None, it will
default to an empty collections.OrderedDict:
>>> ndd.meta = None
>>> ndd.meta
OrderedDict()
>>> ndd = NDData([1,2,3])
>>> ndd.meta
OrderedDict()
The meta object therefore supports adding or updating these values:
>>> ndd.meta['exposure_time'] = 340.
>>> ndd.meta['filter'] = 'J'
Elements of the metadata dictionary can be set to any valid Python object:
>>> ndd.meta['history'] = ['calibrated', 'aligned', 'flat-fielded']
Initialization with Copy#
The default way to create an NDData instance is to try saving
the parameters as references to the original rather than as copy. Sometimes
this is not possible because the internal mechanics do not allow for this.
Examples#
If the data is a list then during initialization this is copied
while converting to a ndarray. But it is also possible to enforce
copies during initialization by setting the copy parameter to True:
>>> array = np.array([1, 2, 3, 4])
>>> ndd = NDData(array)
>>> ndd.data[2] = 10
>>> array[2] # Original array has changed
10
>>> ndd2 = NDData(array, copy=True)
>>> ndd2.data[2] = 3
>>> array[2] # Original array hasn't changed.
10
Collapsing an NDData object along one or more axes#
A common operation on an ndarray is to take the sum, mean,
maximum, or minimum along one or more axes, reducing the dimensions
of the output. These four operations are implemented on
NDData with appropriate propagation of uncertainties,
masks, and units.
For example, let’s work on the following data with a mask, unit, and
(uniform) uncertainty:
>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.nddata import NDDataArray, StdDevUncertainty
>>>
>>> data = [
... [1, 2, 3],
... [2, 3, 4]
... ]
>>> mask = [
... [True, False, False],
... [False, False, False]
... ]
>>> uncertainty = StdDevUncertainty(np.ones_like(data))
>>> nddata = NDDataArray(data=data, uncertainty=uncertainty, mask=mask, unit='m')
The sum along axis 1 gives one result per row:
>>> sum_axis_1 = nddata.sum(axis=1) # this is a new NDDataArray
>>> print(np.asanyarray(sum_axis_1)) # this converts data to a numpy masked array. doctest: +FLOAT_CMP
[-- 9.0]
>>> print(sum_axis_1.uncertainty)
StdDevUncertainty([1.41421356, 1.73205081])
The result has one masked value derived from the logical OR of the original mask
along axis=1. The uncertainties are the square-root of the sum of the squares
of the input uncertainties. Since the original uncertainties were all unity, the
result is the square root of the number of unmasked data entries,
\([\sqrt{2},\,\sqrt{3}]\).
We can similarly take the mean along axis=1:
>>> mean_axis_1 = nddata.mean(axis=1)
>>> print(np.asanyarray(mean_axis_1))
[2.5 3.0]
>>> print(mean_axis_1.uncertainty)
StdDevUncertainty([0.70710678, 0.57735027])
The result is the mean of the values where mask==False, and in this example,
the result would only have mask==True if an entire row was masked. Since the
uncertainties were given as StdDevUncertainty, the propagated
uncertainties decrease proportional to the number of unmasked measurements in each
row, following \([2^{-1/2},\,3^{-1/2}]\).
There’s no single, correct way of defining the uncertainties associated
with the min or max of a set of measurements, so
NDData resists the temptation to guess, and returns
the minimum data value along the axis/axes, and the propagated mask, but
no uncertainties:
>>> min_axis_1 = nddata.min(axis=1)
>>> print(np.asanyarray(min_axis_1))
[2.0 2.0]
>>> print(min_axis_1.uncertainty)
None
For some use cases, it may be helpful to return the uncertainty
at the same index as the minimum/maximum data value, so that
the original data retains its uncertainty. You can get this
behavior with:
>>> min_axis_1 = nddata.min(axis=1, propagate_uncertainties=True)
>>> print(np.asanyarray(min_axis_1))
[2.0 2.0]
>>> print(min_axis_1.uncertainty)
StdDevUncertainty([1, 1])
Finally, in some cases it may be useful to do perform a collapse
operation only on the unmasked values, and only return a masked
result when all of the input values are masked. If we refer back to
the first example in this section, we see that the underlying
data attribute has been summed over all values, including
masked ones:
>>> sum_axis_1
NDDataArray([——, 9.], unit='m')
where the first data element is masked. We can instead get the sum
for only unmasked values with the operation_ignores_mask option:
>>> nddata.sum(axis=1, operation_ignores_mask=True)
NDDataArray([5, 9], unit='m')
Converting NDData to Other Classes#
There is limited support to convert a NDData instance to
other classes. In the process some properties might be lost.
>>> data = np.array([1, 2, 3, 4])
>>> mask = np.array([True, False, False, True])
>>> unit = 'm'
>>> ndd = NDData(data, mask=mask, unit=unit)
numpy.ndarray#
Converting the data to an array:
>>> array = np.asarray(ndd.data)
>>> array
array([1, 2, 3, 4])
Though using np.asarray is not required, in most cases it will ensure that
the result is always a numpy.ndarray
numpy.ma.MaskedArray#
Converting the data and mask to a MaskedArray:
>>> masked_array = np.ma.array(ndd.data, mask=ndd.mask)
>>> masked_array
masked_array(data=[--, 2, 3, --],
mask=[ True, False, False, True],
fill_value=999999)
Quantity#
Converting the data and unit to a Quantity:
>>> quantity = u.Quantity(ndd.data, unit=ndd.unit)
>>> quantity
<Quantity [1., 2., 3., 4.] m>
MaskedQuantity#
Converting the data, unit, and mask to a MaskedQuantity:
>>> from astropy.utils.masked import Masked
>>> Masked(u.Quantity(ndd.data, ndd.unit), ndd.mask)
<MaskedQuantity [——, 2., 3., ——] m>