Documentation

This tutorial introduces you to the concepts and features of the Bottle web framework. If you have questions not answered here, please check the Frequently Asked Questions page, file a ticket at the issue tracker or send an e-mail to the mailing list.

A quick overview:

Installation

Bottle does not depend on any external libraries. You can just download bottle.py into your project directory and start coding:

$ curl -O http://bottlepy.org/bottle.py
$ 2to3 -w bottle.py  # Python 3.x users only!

This will get you the latest development snapshot that includes all the new features. If you prefer a more stable environment, you should stick with a stable release. These are available on PyPi and can be installed via pip (recommended), easy_install or your Linux distributions package manager:

$ sudo pip install bottle              # recommended
$ sudo easy_install bottle             # alternative to pip
$ sudo apt-get install python-bottle   # works for debian, ubuntu, ...

In either way, you’ll need Python 2.5 or newer to run bottle applications. If you do not have permissions to install packages system-wide or simply don’t want to, I suggest crating a virtualenv first.

A minimal Bottle Application

This tutorial assumes you have Bottle either installed or copied into your project directory. Lets start with a very basic “Hello World” example:

from bottle import route, run

@route('/hello')
def hello():
    return "Hello World!"

run(host='localhost', port=8080)

Whats happening here?

  1. First we import some Bottle components. The route() decorator and the run() function.

  2. The route() decorator is used do bind a piece of code to an URL. In this example we want to answer requests to the /hello URL.

  3. This function is the handler function or callback for the /hello route. It is called every time someone requests the /hello URL and is responsible for generating the page content.

  4. In this example we simply return a string to the browser.

  5. In the last line we start the actual HTTP server. The default is a development server running on ‘localhost’ port 8080 and serving requests until you hit Control-c.

This is it. Run this script, visit http://localhost:8080/hello and you will see “Hello World!” in your browser. Of cause this is a very simple example, but it shows the basic concept of how applications are built with Bottle. Continue reading and you’ll see what else is possible.

The Application Object

For the sake of simplicity, most examples in this tutorial use a module-level route() decorator to bind routes. This decorator adds routes to a global application object that is created automatically in the background. If you prefer a more explicit way to define your application and don’t mind the extra typing, you can create a separate application object and use that instead of the global one:

from bottle import Bottle

app = Bottle()

@app.route('/hello')
def hello():
    return "Hello World!"

run(app, host='localhost', port=8080)

The object-oriented approach is further described in the Default Application section. Just keep in mind that you have a choice.

Request Routing

As you have learned before, routes are used to map URLs to callback functions. These functions are executed on every request that matches the route and their return value is returned to the browser. You can add any number of routes to a callback using the route() decorator.

from bottle import route

@route('/')
@route('/index.html')
def index():
    return "<a href='/hello'>Go to Hello World page</a>"

@route('/hello')
def hello():
    return "Hello World!"

As you can see, URLs and routes have nothing to do with actual files on the web server. Routes are unique names for your callbacks, nothing more and nothing less. All URLs not covered by a route are answered with a “404 Page not found” error page.

Dynamic Routes

Bottle has a special syntax to add wildcards to a route and allow a single route to match a wide range of URLs. These dynamic routes are often used by blogs or wikis to create nice looking and meaningful URLs such as /archive/2010/04/21 or /wiki/Page_Title. Why? Because cool URIs don’t change. Let’s add a :name wildcard to our last example:

@route('/hello/:name')
def hello(name):
    return "Hello %s!" % name

This dynamic route will match /hello/alice as well as /hello/bob. Each URL fragment covered by a wildcard is passed to the callback function as a keyword argument so you can use the information in your application.

Normal wildcards match everything up to the next slash. You can add a regular expression to change that:

@route('/object/:id#[0-9]+#')
def view_object(id):
    return "Object ID: %d" % int(id)

As you can see, the keyword argument contains a string even if the wildcard is configured to only match digits. You have to explicitly cast it into an integer if you need to.

HTTP Request Methods

The HTTP protocol defines several request methods (sometimes referred to as “verbs”) for different tasks. GET is the default for all routes with no other method specified. These routes will match GET requests only. To handle other methods such as POST, PUT or DELETE, you may add a method keyword argument to the route() decorator or use one of the four alternative decorators: get(), post(), put() or delete().

The POST method is commonly used for HTML form submission. This example shows how to handle a login form using POST:

from bottle import get, post, request

#@route('/login')
@get('/login')
def login_form():
    return '''<form method="POST">
                <input name="name"     type="text" />
                <input name="password" type="password" />
              </from>'''

#@route('/login', method='POST')
@post('/login')
def login_submit():
    name     = request.forms.get('name')
    password = request.forms.get('password')
    if check_login(name, password):
        return "<p>Your login was correct</p>"
    else:
        return "<p>Login failed</p>"

In this example the /login URL is bound to two distinct callbacks, one for GET requests and another for POST requests. The first one displays a HTML form to the user. The second callback is invoked on a form submission and checks the login credentials the user entered into the form. The use of Request.forms is further described in the Accessing Request Data section.

Automatic Fallbacks

The special HEAD method is used to ask for the response identical to the one that would correspond to a GET request, but without the response body. This is useful for retrieving meta-information about a resource without having to download the entire document. Bottle handles these requests automatically by falling back to the corresponding GET route and cutting off the request body, if present. You don’t have to specify any HEAD routes yourself.

Additionally, the non-standard ANY method works as a low priority fallback: Routes that listen to ANY will match requests regardless of their HTTP method but only if no other more specific route is defined. This is helpful for proxy-routes that redirect requests to more specific sub-applications.

To sum it up: HEAD requests fall back to GET routes and all requests fall back to ANY routes, but only if there is no matching route for the original request method. It’s as simple as that.

Routing Static Files

Static files such as images or css files are not served automatically. You have to add a route and a callback to control which files get served and where to find them:

from bottle import static_file
@route('/static/:filename')
def server_static(filename):
    return static_file(filename, root='/path/to/your/static/files')

The static_file() function is a helper to serve files in a safe and convenient way (see Static Files). This example is limited to files directly within the /path/to/your/static/files directory because the :filename wildcard won’t match a path with a slash in it. To serve files in subdirectories too, we can loosen the wildcard a bit:

@route('/static/:path#.+#')
def server_static(path):
    return static_file(path, root='/path/to/your/static/files')

Be careful when specifying a relative root-path such as root='./static/files'. The working directory (./) and the project directory are not always the same.

Error Pages

If anything goes wrong, Bottle displays an informative but fairly boring error page. You can override the default for a specific HTTP status code with the error() decorator:

@error(404)
def error404(error):
    return 'Nothing here, sorry'

From now on, 404 File not Found errors will display a custom error page to the user. The only parameter passed to the error-handler is an instance of HTTPError. Apart from that, an error-handler is quite similar to a regular request callback. You can read from request, write to response and return any supported data-type except for HTTPError instances.

Error handlers are used only if your application returns or raises an HTTPError exception (abort() does just that). Changing Request.status or returning HTTPResponse won’t trigger the error handler.

Generating content

In pure WSGI, the range of types you may return from your application is very limited. Applications must return an iterable yielding byte strings. You may return a string (because strings are iterable) but this causes most servers to transmit your content char by char. Unicode strings are not allowed at all. This is not very practical.

Bottle is much more flexible and supports a wide range of types. It even adds a Content-Length header if possible and encodes unicode automatically, so you don’t have to. What follows is a list of data types you may return from your application callbacks and a short description of how these are handled by the framework:

Dictionaries

As mentioned above, Python dictionaries (or subclasses thereof) are automatically transformed into JSON strings and returned to the browser with the Content-Type header set to application/json. This makes it easy to implement json-based APIs. Data formats other than json are supported too. See the tutorial-output-filter to learn more.

Empty Strings, False, None or other non-true values:

These produce an empty output with Content-Length header set to 0.

Unicode strings

Unicode strings (or iterables yielding unicode strings) are automatically encoded with the codec specified in the Content-Type header (utf8 by default) and then treated as normal byte strings (see below).

Byte strings

Bottle returns strings as a whole (instead of iterating over each char) and adds a Content-Length header based on the string length. Lists of byte strings are joined first. Other iterables yielding byte strings are not joined because they may grow too big to fit into memory. The Content-Length header is not set in this case.

Instances of HTTPError or HTTPResponse

Returning these has the same effect as when raising them as an exception. In case of an HTTPError, the error handler is applied. See Error Pages for details.

File objects

Everything that has a .read() method is treated as a file or file-like object and passed to the wsgi.file_wrapper callable defined by the WSGI server framework. Some WSGI server implementations can make use of optimized system calls (sendfile) to transmit files more efficiently. In other cases this just iterates over chunks that fit into memory. Optional headers such as Content-Length or Content-Type are not set automatically. Use send_file() if possible. See Static Files for details.

Iterables and generators

You are allowed to use yield within your callbacks or return an iterable, as long as the iterable yields byte strings, unicode strings, HTTPError or HTTPResponse instances. Nested iterables are not supported, sorry. Please note that the HTTP status code and the headers are sent to the browser as soon as the iterable yields its first non-empty value. Changing these later has no effect.

The ordering of this list is significant. You may for example return a subclass of str with a read() method. It is still treated as a string instead of a file, because strings are handled first.

Changing the Default Encoding

Bottle uses the charset parameter of the Content-Type header to decide how to encode unicode strings. This header defaults to text/html; charset=UTF8 and can be changed using the Response.content_type attribute or by setting the Response.charset attribute directly. (The Response object is described in the section The Response Object.)

from bottle import response
@route('/iso')
def get_iso():
    response.charset = 'ISO-8859-15'
    return u'This will be sent with ISO-8859-15 encoding.'

@route('/latin9')
def get_latin():
    response.content_type = 'text/html; charset=latin9'
    return u'ISO-8859-15 is also known as latin9.'

In some rare cases the Python encoding names differ from the names supported by the HTTP specification. Then, you have to do both: first set the Response.content_type header (which is sent to the client unchanged) and then set the Response.charset attribute (which is used to encode unicode).

Static Files

You can directly return file objects, but static_file() is the recommended way to serve static files. It automatically guesses a mime-type, adds a Last-Modified header, restricts paths to a root directory for security reasons and generates appropriate error responses (401 on permission errors, 404 on missing files). It even supports the If-Modified-Since header and eventually generates a 304 Not modified response. You can pass a custom mimetype to disable mimetype guessing.

from bottle import static_file
@route('/images/:filename#.*\.png#')
def send_image(filename):
    return static_file(filename, root='/path/to/image/files', mimetype='image/png')

@route('/static/:filename')
def send_static(filename):
    return static_file(filename, root='/path/to/static/files')

You can raise the return value of static_file() as an exception if you really need to.

Forced Download

Most browsers try to open downloaded files if the MIME type is known and assigned to an application (e.g. PDF files). If this is not what you want, you can force a download-dialog and even suggest a filename to the user:

@route('/download/:filename')
def download(filename):
    return static_file(filename, root='/path/to/static/files', download=filename)

If the download parameter is just True, the original filename is used.

HTTP Errors and Redirects

The abort() function is a shortcut for generating HTTP error pages.

from bottle import route, abort
@route('/restricted')
def restricted():
    abort(401, "Sorry, access denied.")

To redirect a client to a different URL, you can send a 303 See Other response with the Location header set to the new URL. redirect() does that for you:

from bottle import redirect
@route('/wrong/url')
def wrong():
    redirect("/right/url")

You may provide a different HTTP status code as a second parameter.

Note

Both functions will interrupt your callback code by raising an HTTPError exception.

Other Exceptions

All exceptions other than HTTPResponse or HTTPError will result in a 500 Internal Server Error response, so they won’t crash your WSGI server. You can turn off this behaviour to handle exceptions in your middleware by setting bottle.app().catchall to False.

The Response Object

Response meta-data such as the HTTP status code, response header and cookies are stored in an object called response up to the point where they are transmitted to the browser. You can manipulate these meta-data directly or use the predefined helper methods to do so. The full API and feature list is described in the API section (see Response), but the most common use cases and features are covered here, too.

Status Code

The HTTP status code controls the behaviour of the browser and defaults to 200 OK. In most scenarios you won’t need to set the Response.status attribute manually, but use the abort() helper or return an HTTPResponse instance with the appropriate status code. Any integer is allowed but only the codes defined by the HTTP specification will have an effect other than confusing the browser and breaking standards.

Response Header

Add values to the Response.headers dictionary to add or change response headers. Note that the keys are case-insensitive.

@route('/wiki/:page')
def wiki(page):
    response.headers['Content-Language'] = 'en'
    return get_wiki_page(page)

Cookies

A cookie is a piece of text stored in the user’s browser. You can access cookies via Request.get_cookie() and set new cookies with the Response.set_cookie() method:

@route('/hello')
def hello_again(self):
    if request.get_cookie("visited"):
        return "Welcome back! Nice to see you again"
    else:
        response.set_cookie("visited", "yes")
        return "Hello there! Nice to meet you"

But there are some gotchas:

  • Cookies are limited to 4kb of text in most browsers.

  • Some users configure their browsers to not accept cookies at all. Most search-engines ignore cookies, too. Make sure that your application is still usable without cookies.

  • Cookies are stored at client side and not encrypted in any way. Whatever you store in a cookie, the user can read it. Worth than that, an attacker might be able to steal a user’s cookies through XSS vulnerabilities on your side. Some viruses are known to read the browser cookies, too. Do not store confidential information in cookies, ever.

  • Cookies are easily forged by malicious clients. Do not trust cookies.

Signed Cookies

As mentioned above, cookies are easily forged by malicious clients. Bottle can cryptographically sign your cookies to prevent this kind of manipulation. All you have to do is to provide a signature key whenever you read or set a cookie and keep that key a secret. As a result, Request.get_cookie() will return None if the cookie is not signed or the signature keys don’t match:

@route('/login')
def login():
    username = request.forms.get('username')
    password = request.forms.get('password')
    if check_user_credentials(username, password):
        response.set_cookie("account", username, secret='some-secret-key')
        return "Welcome %s! You are now logged in." % username
    else:
        return "Login failed."

@route('/restricted')
def restricted_area(self):
    username = request.get_cookie("account", secret='some-secret-key')
    if username:
        return "Hello %s. Welcome back." % username
    else:
        return "You are not logged in. Access denied."

In addition, Bottle automatically pickles and unpickles any data stored to signed cookies. This allows you to store any pickle-able object (not only strings) to cookies, as long as the pickled data does not exceed the 4kb limitation.

Warning

Signed cookies are not encrypted (the client can still see the content) and not copy-protected (the client can restore an old cookie). The main intention is to make pickling and unpickling save, not to store secret information at client side.

Accessing Request Data

Bottle provides access to HTTP related meta-data such as cookies, headers and POST form data through a global request object. This object always contains information about the current request, as long as it is accessed from within a callback function. This works even in multi-threaded environments where multiple requests are handled at the same time. For details on how a global object can be thread-safe, see contextlocal.

Note

Bottle stores most of the parsed HTTP meta-data in MultiDict instances. These behave like normal dictionaries but are able to store multiple values per key. The standard dictionary access methods will only return a single value. Use the MultiDict.getall() method do receive a (possibly empty) list of all values for a specific key. The HeaderDict class inherits from MultiDict and additionally uses case insensitive keys.

The full API and feature list is described in the API section (see Request), but the most common use cases and features are covered here, too.

HTTP Header

Header are stored in Request.header. The attribute is an instance of HeaderDict which is basically a dictionary with case-insensitive keys:

from bottle import route, request
@route('/is_ajax')
def is_ajax():
    if request.header.get('X-Requested-With') == 'XMLHttpRequest':
        return 'This is an AJAX request'
    else:
        return 'This is a normal request'

Cookies

Cookies are stored in Request.COOKIES as a normal dictionary. The Request.get_cookie() method allows access to Cookies as described in a separate section. This example shows a simple cookie-based view counter:

from bottle import route, request, response
@route('/counter')
def counter():
    count = int( request.COOKIES.get('counter', '0') )
    count += 1
    response.set_cookie('counter', str(count))
    return 'You visited this page %d times' % count

Query Strings

The query string (as in /forum?id=1&page=5) is commonly used to transmit a small number of key/value pairs to the server. You can use the Request.GET dictionary to access these values and the Request.query_string attribute to get the whole string.

from bottle import route, request, response
@route('/forum')
def display_forum():
    forum_id = request.GET.get('id')
    page = request.GET.get('page', '1')
    return 'Forum ID: %s (page %s)' % (forum_id, page)

POST Form Data and File Uploads

The request body of POST and PUT requests may contain form data encoded in various formats. Use the Request.forms attribute (a MultiDict) to access normal POST form fields. File uploads are stored separately in Request.files as cgi.FieldStorage instances. The Request.body attribute holds a file object with the raw body data.

Here is an example for a simple file upload form:

<form action="/upload" method="post" enctype="multipart/form-data">
  <input type="text" name="name" />
  <input type="file" name="data" />
</form>
from bottle import route, request
@route('/upload', method='POST')
def do_upload():
    name = request.forms.get('name')
    data = request.files.get('data')
    if name and data:
        raw = data.file.read() # This is dangerous for big files
        filename = data.filename
        return "Hello %s! You uploaded %s (%d bytes)." % (name, filename, len(raw))
    return "You missed a field."

WSGI environment

The Request object stores the WSGI environment dictionary in Request.environ and allows dict-like access to its values. See the WSGI specification for details.

@route('/my_ip')
def show_ip():
    ip = request.environ.get('REMOTE_ADDR')
    # or ip = request.get('REMOTE_ADDR')
    # or ip = request['REMOTE_ADDR']
    return "Your IP is: %s" % ip

Templates

Bottle comes with a fast and powerful built-in template engine called SimpleTemplate Engine. To render a template you can use the template() function or the view() decorator. All you have to do is to provide the name of the template and the variables you want to pass to the template as keyword arguments. Here’s a simple example of how to render a template:

@route('/hello')
@route('/hello/:name')
def hello(name='World'):
    return template('hello_template', name=name)

This will load the template file hello_template.tpl and render it with the name variable set. Bottle will look for templates in the ./views/ folder or any folder specified in the bottle.TEMPLATE_PATH list.

The view() decorator allows you to return a dictionary with the template variables instead of calling template():

@route('/hello')
@route('/hello/:name')
@view('hello_template')
def hello(name='World'):
    return dict(name=name)

Syntax

The template syntax is a very thin layer around the Python language. It’s main purpose is to ensure correct indentation of blocks, so you can format your template without worrying about indentation. Follow the link for a full syntax description: SimpleTemplate Engine

Here is an example template:

%if name == 'World':
    <h1>Hello {{name}}!</h1>
    <p>This is a test.</p>
%else:
    <h1>Hello {{name.title()}}!</h1>
    <p>How are you?</p>
%end

Caching

Templates are cached in memory after compilation. Modifications made to the template files will have no affect until you clear the template cache. Call bottle.TEMPLATES.clear() to do so. Caching is disabled in debug mode.

Plugins

New in version 0.9.

Bottle’s core features cover most common use-cases, but as a micro-framework it has its limits. This is where “Plugins” come into play. Plugins add missing functionality to the framework, integrate third party libraries, or just automate some repetitive work.

We have a growing List of available Plugins and most plugins are designed to be portable and re-usable across applications. The chances are high that your problem has already been solved and a ready-to-use plugin exists. If not, the Plugin Development Guide may help you.

The effects and APIs of plugins are manifold and depend on the specific plugin. The ‘sqlite’ plugin for example detects callbacks that require a db keyword argument and creates a fresh database connection object every time the callback is called. This makes it very convenient to use a database:

from bottle import route, install, template
from bottle_sqlite import SQLitePlugin

install(SQLitePlugin(dbfile='/tmp/test.db'))

@route('/show/:post_id')
def show(db, post_id):
    c = db.execute('SELECT title, content FROM posts WHERE id = ?', (int(post_id),))
    row = c.fetchone()
    return template('show_post', title=row['title'], text=row['content'])

@route('/contact')
def contact_page():
    ''' This callback does not need a db connection. Because the 'db'
        keyword argument is missing, the sqlite plugin ignores this callback
        completely. '''
    return template('contact')

Other plugin may populate the thread-save local object, change details of the request object, filter the data returned by the callback or bypass the callback completely. An “auth” plugin for example could check for a valid session and return a login page instead of calling the original callback. What happens exactly depends on the plugin.

Application-wide Installation

Plugins can be installed application-wide or just to some specific routes that need additional functionality. Most plugins are save to be installed to all routes and are smart enough to not add overhead to callbacks that do not need their functionality.

Let us take the ‘sqlite’ plugin for example. It only affects route callbacks that need a database connection. Other routes are left alone. Because of this, we can install the plugin application-wide with no additional overhead.

To install a plugin, just call install() with the plugin as first argument:

from bottle_sqlite import SQLitePlugin
install(SQLitePlugin(dbfile='/tmp/test.db'))

The plugin is not applied to the route callbacks yet. This is delayed to make sure no routes are missed. You can install plugins first and add routes later, if you want to. The order of installed plugins is significant, though. If a plugin requires a database connection, you need to install the database plugin first.

Uninstall Plugins

You can use a name, class or instance to uninstall() a previously installed plugin:

sqlite_plugin = SQLitePlugin(dbfile='/tmp/test.db')
install(sqlite_plugin)

uninstall(sqlite_plugin) # uninstall a specific plugin
uninstall(SQLitePlugin)  # uninstall all plugins of that type
uninstall('sqlite')      # uninstall all plugins with that name
uninstall(True)          # uninstall all plugins at once

Plugins can be installed and removed at any time, even at runtime while serving requests. This enables some neat tricks (installing slow debugging or profiling plugins only when needed) but should not be overused. Each time the list of plugins changes, the route cache is flushed and all plugins are re-applied.

Note

The module-level install() and uninstall() functions affect the Default Application. To manage plugins for a specific application, use the corresponding methods on the Bottle application object.

Route-specific Installation

The apply parameter of the route() decorator comes in handy if you want to install plugins to only a small number of routes:

sqlite_plugin = SQLitePlugin(dbfile='/tmp/test.db')

@route('/create', apply=[sqlite_plugin])
def create(db):
    db.execute('INSERT INTO ...')

Blacklisting Plugins

You may want to explicitly disable a plugin for a number of routes. The route() decorator has a skip parameter for this purpose:

sqlite_plugin = SQLitePlugin(dbfile='/tmp/test.db')
install(sqlite_plugin)

@route('/open/:db', skip=[sqlite_plugin])
def open_db(db):
    # The 'db' keyword argument is not touched by the plugin this time.
    if db in ('test', 'test2'):
        # The plugin handle can be used for runtime configuration, too.
        sqlite_plugin.dbfile = '/tmp/%s.db' % db
        return "Database File switched to: /tmp/%s.db" % db
    abort(404, "No such database.")

The skip parameter accepts a single value or a list of values. You can use a name, class or instance to identify the plugin that is to be skipped. Set skip=True to skip all plugins at once.

Plugins and Sub-Applications

Most plugins are specific to the application they were installed to. Consequently, they should not affect sub-applications mounted with Bottle.mount(). Here is an example:

root = Bottle()
root.mount(apps.blog, '/blog')

@root.route('/contact', template='contact')
def contact():
    return {'email': 'contact@example.com'}

root.install(plugins.WTForms())

Whenever you mount an application, Bottle creates a proxy-route on the main-application that relays all requests to the sub-application. Plugins are disabled for this kind of proxy-routes by default. As a result, our (fictional) WTForms plugin affects the /contact route, but does not affect the routes of the /blog sub-application.

This behavior is intended as a sane default, but can be overridden. The following example re-activates all plugins for a specific proxy-route:

root.mount(apps.blog, '/blog', skip=None)

But there is a snag: The plugin sees the whole sub-application as a single route, namely the proxy-route mentioned above. In order to affect each individual route of the sub-application, you have to install the plugin to the application explicitly.

Development

You learned the basics and want to write your own application? Here are some tips that might help you to be more productive.

Default Application

Bottle maintains a global stack of Bottle instances and uses the top of the stack as a default for some of the module-level functions and decorators. The route() decorator, for example, is a shortcut for calling Bottle.route() on the default application:

@route('/')
def hello():
    return 'Hello World'

This is very convenient for small applications and saves you some typing, but also means that, as soon as your module is imported, routes are installed to the global application. To avoid this kind of import side-effects, Bottle offers a second, more explicit way to build applications:

app = Bottle()

@app.route('/')
def hello():
    return 'Hello World'

Separating the application object improves re-usability a lot, too. Other developers can safely import the app object from your module and use Bottle.mount() to merge applications together.

As an alternative, you can make use of the application stack to isolate your routes while still using the convenient shortcuts:

default_app.push()

@route('/')
def hello():
    return 'Hello World'

app = default_app.pop()

Both app() and default_app() are instance of AppStack and implement a stack-like API. You can push and pop applications from and to the stack as needed. This also helps if you want to import a third party module that does not offer a separate application object:

default_app.push()

import some.module

app = default_app.pop()

Debug Mode

During early development, the debug mode can be very helpful.

bottle.debug(True)

In this mode, Bottle is much more verbose and provides helpful debugging information whenever an error occurs. It also disables some optimisations that might get in your way and adds some checks that warn you about possible misconfiguration.

Here is an incomplete list of things that change in debug mode:

  • The default error page shows a traceback.

  • Templates are not cached.

  • Plugins are applied immediately.

Just make sure to not use the debug mode on a production server.

Auto Reloading

During development, you have to restart the server a lot to test your recent changes. The auto reloader can do this for you. Every time you edit a module file, the reloader restarts the server process and loads the newest version of your code.

from bottle import run
run(reloader=True)

How it works: the main process will not start a server, but spawn a new child process using the same command line arguments used to start the main process. All module-level code is executed at least twice! Be careful.

The child process will have os.environ['BOTTLE_CHILD'] set to True and start as a normal non-reloading app server. As soon as any of the loaded modules changes, the child process is terminated and re-spawned by the main process. Changes in template files will not trigger a reload. Please use debug mode to deactivate template caching.

The reloading depends on the ability to stop the child process. If you are running on Windows or any other operating system not supporting signal.SIGINT (which raises KeyboardInterrupt in Python), signal.SIGTERM is used to kill the child. Note that exit handlers and finally clauses, etc., are not executed after a SIGTERM.

Deployment

Bottle runs on the built-in wsgiref WSGIServer by default. This non-threading HTTP server is perfectly fine for development and early production, but may become a performance bottleneck when server load increases.

There are three ways to eliminate this bottleneck:

  • Use a multi-threaded or asynchronous HTTP server.

  • Spread the load between multiple Bottle instances.

  • Do both.

Multi-Threaded Server

The easiest way to increase performance is to install a multi-threaded or asynchronous WSGI server like paste or cherrypy and tell Bottle to start it instead of the default single-threaded one:

bottle.run(server='paste') # Example

Bottle ships with a lot of ready-to-use adapters for the most common WSGI servers and automates the setup process. Here is an incomplete list:

Name

Homepage

Description

cgi

Run as CGI script

flup

flup

Run as Fast CGI process

gae

gae

Helper for Google App Engine deployments

wsgiref

wsgiref

Single-threaded default server

cherrypy

cherrypy

Multi-threaded and very stable

paste

paste

Multi-threaded, stable, tried and tested

rocket

rocket

Multi-threaded

gunicorn

gunicorn

Pre-forked, partly written in C

fapws3

fapws3

Asynchronous, written in C

tornado

tornado

Asynchronous, powers some parts of Facebook

twisted

twisted

Asynchronous, well tested

diesel

diesel

Asynchronous, based on greenlet

meinheld

meinheld

Asynchronous, partly written in C

bjoern

bjoern

Asynchronous, very fast and written in C

auto

Automatically selects an available server adapter

The full list is available through server_names.

If there is no adapter for your favorite server or if you need more control over the server setup, you may want to start the server manually. Refer to the server documentation on how to mount WSGI applications. Here is an example for paste:

from paste import httpserver
httpserver.serve(bottle.default_app(), host='0.0.0.0', port=80)

Multiple Server Processes

A single Python process can only utilise one CPU at a time, even if there are more CPU cores available. The trick is to balance the load between multiple independent Python processes to utilize all of your CPU cores.

Instead of a single Bottle application server, you start one instance of your server for each CPU core available using different local port (localhost:8080, 8081, 8082, …). Then a high performance load balancer acts as a reverse proxy and forwards each new requests to a random Bottle processes, spreading the load between all available back end server instances. This way you can use all of your CPU cores and even spread out the load between different physical servers.

One of the fastest load balancers available is Pound but most common web servers have a proxy-module that can do the work just fine.

Apache mod_wsgi

Instead of running your own HTTP server from within Bottle, you can attach Bottle applications to an Apache server using mod_wsgi and Bottle’s WSGI interface.

All you need is an app.wsgi file that provides an application object. This object is used by mod_wsgi to start your application and should be a WSGI-compatible Python callable.

File /var/www/yourapp/app.wsgi:

# Change working directory so relative paths (and template lookup) work again
os.chdir(os.path.dirname(__file__))

import bottle
# ... build or import your bottle application here ...
# Do NOT use bottle.run() with mod_wsgi
application = bottle.default_app()

The Apache configuration may look like this:

<VirtualHost *>
    ServerName example.com

    WSGIDaemonProcess yourapp user=www-data group=www-data processes=1 threads=5
    WSGIScriptAlias / /var/www/yourapp/app.wsgi

    <Directory /var/www/yourapp>
        WSGIProcessGroup yourapp
        WSGIApplicationGroup %{GLOBAL}
        Order deny,allow
        Allow from all
    </Directory>
</VirtualHost>

Google AppEngine

New in version 0.9.

The gae adapter completely automates the Google App Engine deployment. It even ensures that a main() function is present in your __main__ module to enable App Caching (which drastically improves performance):

import bottle
# ... build or import your bottle application here ...
bottle.run(server='gae')

It is always a good idea to let GAE serve static files directly. Here is example app.yaml:

application: myapp
version: 1
runtime: python
api_version: 1

handlers:
- url: /static
  static_dir: static

- url: /.*
  script: myapp.py

Good old CGI

CGI is slow as hell, but it works:

import bottle
# ... build or import your bottle application here ...
bottle.run(server=bottle.CGIServer)

Glossary

callback

Programmer code that is to be called when some external action happens. In the context of web frameworks, the mapping between URL paths and application code is often achieved by specifying a callback function for each URL.

decorator

A function returning another function, usually applied as a function transformation using the @decorator syntax. See python documentation for function definition for more about decorators.

environ

A structure where information about all documents under the root is saved, and used for cross-referencing. The environment is pickled after the parsing stage, so that successive runs only need to read and parse new and changed documents.

handler function

A function to handle some specific event or situation. In a web framework, the application is developed by attaching a handler function as callback for each specific URL comprising the application.

source directory

The directory which, including its subdirectories, contains all source files for one Sphinx project.