8.1.6. cltk.embeddings package¶
Init for cltk.embeddings.
8.1.6.1. Submodules¶
8.1.6.2. cltk.embeddings.embeddings module¶
Module for accessing pre-trained fastText word embeddings and Word2Vec embeddings from NLPL. Two sets of models are available from fastText, one being trained only on corpora taken from Wikipedia (249 languages) and the other being a combination of Wikipedia and Common Crawl (157 languages, a subset of the former).
The Word2Vec models are in two versions, txt and bin, with the
txt being approximately twice the size and containing information
for retraining.
# TODO: Classes Word2VecEmbeddings and FastTextEmbeddings contain duplicative code. Consider combining them.
# TODO: Instead of returning None, return an empty numpy array of correct len.
-
class
cltk.embeddings.embeddings.Word2VecEmbeddings(iso_code, model_type='txt', interactive=True, silent=False, overwrite=False)[source]¶ Bases:
objectWrapper for Word2Vec embeddings. Note: For models provided by fastText, use class
FastTextEmbeddings.-
_check_input_params()[source]¶ Confirm that input parameters are valid and in a valid configuration.
- Return type:
None
-
_build_nlpl_filepath()[source]¶ Create filepath where chosen language should be found.
- Return type:
str
-
-
class
cltk.embeddings.embeddings.FastTextEmbeddings(iso_code, training_set='wiki', model_type='vec', interactive=True, overwrite=False, silent=False)[source]¶ Bases:
objectWrapper for fastText embeddings.
-
download_fasttext_models()[source]¶ Perform complete download of fastText models and save them in appropriate
cltk_datadir.TODO: Add tests TODO: Implement
overwriteTODO: error out better or continue to _load_model?
-
_check_input_params()[source]¶ Look at combination of parameters give to class and determine if any invalid combination or missing models.
-
_load_model()[source]¶ Load model into memory.
TODO: When testing show that this is a Gensim type TODO: Suppress Gensim info printout from screen
-
_is_fasttext_lang_available()[source]¶ Returns whether any vectors are available, for fastText, for the input language. This is not comprehensive of all fastText embeddings, only those added into the CLTK.
- Return type:
bool
-
_build_fasttext_filepath()[source]¶ Create filepath at which to save a downloaded fasttext model.
Todo
Do better than test for just name. Try trimming up to user home dir.
>>> from cltk.embeddings.embeddings import FastTextEmbeddings >>> embeddings_obj = FastTextEmbeddings(iso_code="lat", silent=True) >>> vec_fp = embeddings_obj._build_fasttext_filepath() >>> os.path.split(vec_fp)[1] 'wiki.la.vec' >>> embeddings_obj = FastTextEmbeddings(iso_code="lat", training_set="bin", silent=True) >>> bin_fp = embeddings_obj._build_fasttext_filepath() >>> os.path.split(bin_fp)[1] 'wiki.la.bin' >>> embeddings_obj = FastTextEmbeddings(iso_code="lat", training_set="common_crawl", model_type="vec", silent=True) >>> os.path.split(vec_fp)[1] 'cc.la.300.vec' >>> embeddings_obj = FastTextEmbeddings(iso_code="lat", training_set="common_crawl", model_type="bin", silent=True) >>> bin_fp = embeddings_obj._build_fasttext_filepath() >>> vec_fp = embeddings_obj._build_fasttext_filepath() >>> os.path.split(bin_fp)[1] 'cc.la.300.bin'
8.1.6.3. cltk.embeddings.processes module¶
This module holds the embeddings ``Process``es.
-
class
cltk.embeddings.processes.EmbeddingsProcess(language: str = None, variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None)[source]¶ Bases:
cltk.core.data_types.ProcessTo be inherited for each language’s embeddings declarations.
Note
There can be no
DefaultEmbeddingsProcessbecause word embeddings are naturally language-specific.Example:
EmbeddingsProcess<-LatinEmbeddingsProcess>>> from cltk.core.data_types import Doc >>> from cltk.embeddings.processes import EmbeddingsProcess >>> from cltk.core.data_types import Process >>> issubclass(EmbeddingsProcess, Process) True >>> emb_proc = EmbeddingsProcess()
-
language: str = None¶
-
variant: str = 'fasttext'¶
-
embedding_length: int = None¶
-
idf_model: Optional[Dict[str, float]] = None¶
-
min_idf: Optional[numpy.float64] = None¶
-
max_idf: Optional[numpy.float64] = None¶
-
algorithm¶
-
class
cltk.embeddings.processes.ArabicEmbeddingsProcess(language: str = 'arb', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Arabic.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Arabic embeddings algorithm.
-
description: str = 'Default embeddings for Arabic.'¶
-
language: str = 'arb'¶
-
-
class
cltk.embeddings.processes.AramaicEmbeddingsProcess(language: str = 'arb', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Aramaic.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Aramaic embeddings algorithm.
-
description: str = 'Default embeddings for Aramaic.'¶
-
language: str = 'arb'¶
-
-
class
cltk.embeddings.processes.GothicEmbeddingsProcess(language: str = 'got', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Gothic.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Gothic embeddings algorithm.
-
description: str = 'Default embeddings for Gothic.'¶
-
language: str = 'got'¶
-
-
class
cltk.embeddings.processes.GreekEmbeddingsProcess(language: str = 'grc', variant: str = 'nlpl', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Ancient Greek.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Ancient Greek embeddings algorithm.
-
language: str = 'grc'¶
-
description: str = 'Default embeddings for Ancient Greek.'¶
-
variant: str = 'nlpl'¶
-
-
class
cltk.embeddings.processes.LatinEmbeddingsProcess(language: str = 'lat', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Latin.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Latin embeddings algorithm.
-
language: str = 'lat'¶
-
description: str = 'Default embeddings for Latin.'¶
-
-
class
cltk.embeddings.processes.OldEnglishEmbeddingsProcess(language: str = 'ang', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Old English.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Old English embeddings algorithm.
-
description: str = 'Default embeddings for Old English.'¶
-
language: str = 'ang'¶
-
-
class
cltk.embeddings.processes.PaliEmbeddingsProcess(language: str = 'pli', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Pali.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Pali embeddings algorithm.
-
description: str = 'Default embeddings for Pali.'¶
-
language: str = 'pli'¶
-
-
class
cltk.embeddings.processes.SanskritEmbeddingsProcess(language: str = 'san', variant: str = 'fasttext', embedding_length: int = None, idf_model: Optional[Dict[str, float]] = None, min_idf: Optional[numpy.float64] = None, max_idf: Optional[numpy.float64] = None, description: str = 'Default embeddings for Sanskrit.')[source]¶ Bases:
cltk.embeddings.processes.EmbeddingsProcessThe default Sanskrit embeddings algorithm.
-
description: str = 'Default embeddings for Sanskrit.'¶
-
language: str = 'san'¶
-
-
-
class
-