dask.array.asanyarray
dask.array.asanyarray¶
- dask.array.asanyarray(a, dtype=None, order=None, *, like=None, inline_array=False)[source]¶
Convert the input to a dask array.
Subclasses of
np.ndarray
will be passed through as chunks unchanged.- Parameters
- aarray-like
Input data, in any form that can be converted to a dask array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
- dtypedata-type, optional
By default, the data-type is inferred from the input data.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order. Defaults to ‘C’.
- like: array-like
Reference object to allow the creation of Dask arrays with chunks that are not NumPy arrays. If an array-like passed in as
like
supports the__array_function__
protocol, the chunk type of the resulting array will be definde by it. In this case, it ensures the creation of a Dask array compatible with that passed in via this argument. Iflike
is a Dask array, the chunk type of the resulting array will be defined by the chunk type oflike
. Requires NumPy 1.20.0 or higher.- inline_array:
Whether to inline the array in the resulting dask graph. For more information, see the documentation for
dask.array.from_array()
.
- Returns
- outdask array
Dask array interpretation of a.
Examples
>>> import dask.array as da >>> import numpy as np >>> x = np.arange(3) >>> da.asanyarray(x) dask.array<array, shape=(3,), dtype=int64, chunksize=(3,), chunktype=numpy.ndarray>
>>> y = [[1, 2, 3], [4, 5, 6]] >>> da.asanyarray(y) dask.array<array, shape=(2, 3), dtype=int64, chunksize=(2, 3), chunktype=numpy.ndarray>