dask.array.bitwise_or

dask.array.bitwise_or

dask.array.bitwise_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_or'>

This docstring was copied from numpy.bitwise_or.

Some inconsistencies with the Dask version may exist.

Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.

Parameters
x1, x2array_like

Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

outndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

wherearray_like, optional

This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns
outndarray or scalar

Result. This is a scalar if both x1 and x2 are scalars.

See also

logical_or
bitwise_and
bitwise_xor
binary_repr

Return the binary representation of the input number as a string.

Examples

The number 13 has the binary representation 00001101. Likewise, 16 is represented by 00010000. The bit-wise OR of 13 and 16 is then 00011101, or 29:

>>> np.bitwise_or(13, 16)  
29
>>> np.binary_repr(29)  
'11101'
>>> np.bitwise_or(32, 2)  
34
>>> np.bitwise_or([33, 4], 1)  
array([33,  5])
>>> np.bitwise_or([33, 4], [1, 2])  
array([33,  6])
>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))  
array([  6,   5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])  
array([  6,   5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),  
...               np.array([4, 4, 4, 2147483647], dtype=np.int32))
array([         6,          5,        255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])  
array([ True,  True])

The | operator can be used as a shorthand for np.bitwise_or on ndarrays.

>>> x1 = np.array([2, 5, 255])  
>>> x2 = np.array([4, 4, 4])  
>>> x1 | x2  
array([  6,   5, 255])