dask.array.random.randint
dask.array.random.randint¶
- dask.array.random.randint(*args, **kwargs)¶
Return random integers from low (inclusive) to high (exclusive).
This docstring was copied from numpy.random.mtrand.RandomState.randint.
Some inconsistencies with the Dask version may exist.
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low).
Note
New code should use the ~numpy.random.Generator.integers method of a ~numpy.random.Generator instance instead; please see the Quick Start.
- Parameters
- lowint or array-like of ints
Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is one above the highest such integer).- highint or array-like of ints, optional
If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if
high=None). If array-like, must contain integer values- sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned.- dtypedtype, optional
Desired dtype of the result. Byteorder must be native. The default value is int.
New in version 1.11.0.
- Returns
- outint or ndarray of ints
size-shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.
See also
random_integerssimilar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.
random.Generator.integerswhich should be used for new code.
Examples
>>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]])
Generate a 1 x 3 array with 3 different upper bounds
>>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random
Generate a 1 by 3 array with 3 different lower bounds
>>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random
Generate a 2 by 4 array using broadcasting with dtype of uint8
>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8)