dask.array.store
dask.array.store¶
- dask.array.store(sources: Array | Collection[Array], targets: ArrayLike | Delayed | Collection[ArrayLike | Delayed], lock: bool | Lock = True, regions: tuple[slice, ...] | Collection[tuple[slice, ...]] | None = None, compute: bool = True, return_stored: bool = False, **kwargs)[source]¶
Store dask arrays in array-like objects, overwrite data in target
This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk so that it does not have to fill up memory. For best performance you can align the block size of the storage target with the block size of your array.
If your data fits in memory then you may prefer calling
np.array(myarray)
instead.- Parameters
- sources: Array or collection of Arrays
- targets: array-like or Delayed or collection of array-likes and/or Delayeds
These should support setitem syntax
target[10:20] = ...
. If sources is a single item, targets must be a single item; if sources is a collection of arrays, targets must be a matching collection.- lock: boolean or threading.Lock, optional
Whether or not to lock the data stores while storing. Pass True (lock each file individually), False (don’t lock) or a particular
threading.Lock
object to be shared among all writes.- regions: tuple of slices or collection of tuples of slices, optional
Each
region
tuple inregions
should be such thattarget[region].shape = source.shape
for the corresponding source and target in sources and targets, respectively. If this is a tuple, the contents will be assumed to be slices, so do not provide a tuple of tuples.- compute: boolean, optional
If true compute immediately; return
dask.delayed.Delayed
otherwise.- return_stored: boolean, optional
Optionally return the stored result (default False).
- kwargs:
Parameters passed to compute/persist (only used if compute=True)
- Returns
- If return_stored=True
tuple of Arrays
- If return_stored=False and compute=True
None
- If return_stored=False and compute=False
Delayed
Examples
>>> import h5py >>> f = h5py.File('myfile.hdf5', mode='a') >>> dset = f.create_dataset('/data', shape=x.shape, ... chunks=x.chunks, ... dtype='f8')
>>> store(x, dset)
Alternatively store many arrays at the same time
>>> store([x, y, z], [dset1, dset2, dset3])