E\\\\(} ® ... Isc High Performance

EasyBuild tutorial
1SC'22

Sebastian Achilles (JSC) - Kurt Lust (Univ. of Antwerp)
Alan OCais (CECAM) - Kenneth Hoste (HPC-UGent)

29 May 2022
https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

Agenda (all times are CEST)

®
: Isc High Performance

The HPC Event.

e [14:00-14:10] Practical information w.r.t. prepared environment for hands-on
e [14:10-14:30] Introduction to EasyBuild: scope & terminology

e [14:30-14:50] Installing & configuring EasyBuild + basic usage

e [14:50-15:30] Installing software with EasyBuild + troubleshooting

e [15:30-16:00] Adding support for additional software

e [16:00-16:30] (coffee break)

e [16:30-16:50] Module naming schemes (incl. hierarchical)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22

PraCtical information Isc High Performance

The HPC Event.

e Sunday 29th of May 2022, 14:00 - 18:00 CEST

e Tutorial website: https://easybuild.io/tutorial/isc22

e Pleasejointhe #tutorial-isc22 channelin the EasyBuild Slack to ask questions!

e Prepared environment for hands-on demos & exercises

https://easybuilders.qgithub.io/easybuild-tutorial/2022-isc22/practical _info 3

https://easybuild.io/tutorial/isc22
https://easybuild.slack.com/archives/C03FJCGJ1DF
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

Questions or problems?
Speak up in #tutorial-isc22 on EasyBuild Slack!

Join via https://easybuild.io/join-slack

Use threads to avoid overflowing the channel!

Welcome to the EasyBuild tutorial!

& DavideVanzo ¢:12pPM Start a thread

v joined #tutorial.

, @ Q= R
¢ DavideVanzo ¢:12pPM

¥ lhavea question

Thread
#tutorial

¢ Davide Vanzo Todayat 6:12 PM
| have a question

1 reply

E'ﬂ Kenneth Hoste (boegel) 1 minute ago
| may have an answer.

https://easybuild.io/join-slack
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

Emoji polls in Slack

e Small polls will be posted in the #tutorial-isc22 Slack channel.

e Vote for one (or more) answers using the corresponding emoji !

This is an e tample question.
e @ Pocsitive answer.
e @ Bur-inganswer.
° @ Gee <y answer.

@1 (1 (§1 ©

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

Prepared environment

e Small Rocky 8 cluster (in the cloud)

e You need to create an account!
o Signup: https://mokey.isc22.learnhpc.eu/auth/signup
o Accounts will only be approved for access on 29 May 2022,
so please record your username/password !
m Reset Password liNk does not work, instead raise any login problem in Slack

e Access via ssh or web browser (pick one and stick to it!)
o Shell access: ssh isc22.learnhpc.eu
o Via browser: https://isc22.learnhpc.eu

e System will be up until the end of the conference (18:15 CEST, Thursday 2 June 2022)

https://mokey.isc22.learnhpc.eu/auth/signup
https://mokey.isc22.learnhpc.eu/auth/forgotpw
https://isc22.learnhpc.eu/
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

Agenda (all times are CEST)

®
: Isc High Performance

The HPC Event.

e [14:10-14:30] Introduction to EasyBuild: scope & terminology

e [14:30-14:50] Installing & configuring EasyBuild + basic usage

e [14:50-15:30] Installing software with EasyBuild + troubleshooting

e [15:30-16:00] Adding support for additional software

e [16:00-16:30] (coffee break)

e [16:30-16:50] Module naming schemes (incl. hierarchical)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22

What is EasyBuild?

e EasyBuild is a software build and installation framework

e Strong focus on scientific software, performance, and HPC systems

e Open source (GPLv2), implemented in Python (2.7, 3.5+)

https://easybuild.io

e Brief history: https://docs.easybuild.io
o Created in-house at HPC-UGent in 2008 https://github.com/easybuilders
o First released publicly in Apr'12 (version 0.5) https://easybuild.io/join-slack
o EasyBuild 1.0.0 released in Nov'12 (during SC12) Twitter: @easy_build
o Worldwide community has grown around it since then!

https://easybuild.io
https://docs.easybuild.io
https://github.com/easybuilders
https://easybuild.io/join-slack
https://twitter.com/easy_build
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild in a nutshell

Tool to provide a consistent and well performing scientific software stack
Uniform interface for installing scientific software on HPC systems

Saves time by automating tedious, boring and repetitive tasks

Can empower scientific researchers to self-manage their software stack

A platform for collaboration among HPC sites worldwide

Has become an “expert system” for installing scientific software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Key features of EasyBuild (1/2)

Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, ...

No admin privileges are required (only write permission to installation prefix)
Highly configurable, easy to extend, support for hooks, easy customisation
Detailed logging, fully transparent via support for “dry runs” and trace mode

Support for using custom module naming schemes (incl. hierarchical)

10

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Key features of EasyBuild (2/2)

e Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, ...)

e Actively developed and supported by worldwide community

e Frequent stable releases since 2012 (every 6 - 8 weeks)

e Comprehensive testing: unit tests, testing contributions, regression testing

e Various support channels (mailing list, Slack, conf calls) + yearly user meetings

11

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Focus points in EasyBuild

Performance
e Strong preference for building software from source

e Software is optimized for the processor architecture of build host (by default)

Reproducibility
e Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

e Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort
e Development is highly driven by EasyBuild community

e Lots of active contributors, integration with GitHub to facilitate contributions

12

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

What EasyBuild is not

e EasyBuild is not YABT (Yet Another Build Tool)
o It does not try to replace CMake, make, pip, etc.

o Itwraps around those tools and automates installation procedures

e EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, ...)

o You should still install some software via OS package manager: OpenSSL, Slurm, etc.

e EasyBuild is not a magic solution to all your (software installation) problems

o You may still run into compiler errors (unless somebody worked around it already)

13

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology

e Itisimportant to briefly explain some terminology often used in EasyBuild
e Some concepts are specific to EasyBuild: easyblocks, easyconfigs, ...

e Overloaded terms are clarified; modules, extensions, toolchains, ...

14

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: framework

e The EasyBuild framework is the core of EasyBuild

e Collection of Python modules, organised in packages

e Implements common functionality for building and installing software

e Support for applying patches, running commands, generating module files, ...
e Examples: easybuild.toolchains easybuild.tools, ...

e Provides eb command, but can also be leveraged as a Python library

e GitHub repository: https://github.com/easybuilders/easybuild-framework

15

https://github.com/easybuilders/easybuild-framework
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: easyblock

A Python module that implements a specific software installation procedure

o Can be viewed as a “plugin” to the EasyBuild framework

e Generic easyblocks for “standard” stuff: cmake + make + make install, Python packages, etc.
e Software-specific easyblocks for complex software (OpenFOAM, TensorFlow, WREF, ...)

e Installation procedure can be controlled via easyconfig parameters

o Additional configure options, commands to run before/after build or install command, ...

o Generic easyblock + handful of defined easyconfig parameters is sufficient to install a lot of software

e GitHub repository: https://github.com/easybuilders/easybuild-easyblocks

e Easyblocks do not need to be part of the EasyBuild installation (see --include-easyblocks)

16

https://github.com/easybuilders/easybuild-easyblocks
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: easyconfig file

e Text file that specifies what EasyBuild should install (in Python syntax)
e Collection of values for easyconfig parameters (key-value definitions)
e Filename typically ends in‘.eb’
e Specific filename is expected in some contexts (when resolving dependencies)
o Should match with values for name, version, toolchain, versionsuffix

O <name>-<version>-<toolchain><versionsuffix>.eb

e GitHub repository: https://github.com/easybuilders/easybuild-easyconfigs

17

https://github.com/easybuilders/easybuild-easyconfigs
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: easystack file

e New concept since EasyBuild v4.3.2 (Dec'20), experimental feature

e Concise description for software stack to be installed (in YAML syntax)
e Basically specifies a set of easyconfig files (+ associated info)

e Still a work-in-progress, only basic functionality implemented currently

e More info: https://docs.easybuild.io/en/latest/Easystack-files.html

18

https://docs.easybuild.io/en/latest/Easystack-files.html
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: extensions

Additional software that can be installed on top of other software

e Common examples: Python packages, Perl modules, R libraries, ...

Extensions is the general term we use for this type of software packages

Can be installed in different ways:
o As a stand-alone software packages (separate module)
o In abundle together with other extensions

o As an actual extension, to provide a “batteries included” installation

19

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: dependencies

e Software that is required to build/install or run other software

e Build dependencies: only required when building/installing software (not to use it)
o Examples: CMake, pip, pkg-config, ...

e Run-time dependencies: (also) required to use the installed software
o Examples: Python, Perl, R, ...

e Link-time dependencies: libraries that are required by software to link to
o Examples: glibc, OpenBLAS, FFTW, ...

e Currently in EasyBuild: no distinction between link-time and run-time dependencies

20

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: toolchains

Compiler toolchain: set of compilers + libraries for MPI, BLAS/LAPACK, FFT, ...
Toolchain component: a part of a toolchain (compiler component, etc.)

Full toolchain: C/C++/Fortran compilers + libraries for MPI, BLAS/LAPACK, FFT
Subtoolchain (partial toolchain): compiler-only, only compiler + MPI, etc.

System toolchain: use compilers (+ libraries) provided by the operating system

Common toolchains: widely used toolchains in EasyBuild community:
o foss: GCC+ OpenMPI + (FlexiBLAS +) OpenBLAS + FFTW

o intel:Intel compilers + Intel MPI + Intel MKL

21

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: modules

e Veryoverloaded term: kernel modules, Python modules, Perl modules ...

e In EasyBuild context: “module” usually refers to an environment module file
o Shell-agnostic specification of how to “activate” a software installation
o Expressed in Tcl or Lua syntax (scripting languages)

o Consumed by a modules tool (Lmod, Environment Modules, ...)

e Other types of modules will be qualified explicitly (Python modules, etc.)

e FEasyBuild automatically generates a module file for each installation

22

https://lmod.readthedocs.io
https://modules.readthedocs.io
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Bringing all EasyBuild terminology together

The EasyBuild framework leverages easyblocks to automatically build and install
(scientific) software, potentially including additional extensions, using a particular
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

23

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Agenda (all times are CEST)

®
: Isc High Performance

The HPC Event.

e [14:30-14:50] Installing & configuring EasyBuild + basic usage

e [14:50-15:30] Installing software with EasyBuild + troubleshooting

e [15:30-16:00] Adding support for additional software

e [16:00-16:30] (coffee break)

e [16:30-16:50] Module naming schemes (incl. hierarchical)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

24

https://easybuild.io/tutorial/isc22

Installing EasyBuild: requirements

e Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, ...)

o EasyBuild also works on macOS, but support is very basic

e Python 2.7 or 3.5+

o Only Python standard library is required for core functionality of EasyBuild

o Using Python 3 is highly recommended!

e An environment modules tool (module command)

o Defaultis Lua-based Lmod implementation, highly recommended!

o Tcl-based implementations are also supported

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation 25
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Installing EasyBuild: different options

e Installing EasyBuild using a standard Python installation tool
O pip install easybuild
o ..oravariantthereof (pip3 install --user,using virtualenv, etc.)

o May require additional commands, for example to update environment

e Installing EasyBuild as a module, with EasyBuild (recommended!)

o 3-step “bootstrap” procedure, via temporary EasyBuild installation using pip

e Development setup
o Clone GitHub repositories:
easybuilders/easybuild-{framework, easyblocks,easyconfigs}

o Update SPATH and $PYTHONPATH environment variables

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation 26
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Installing EasyBuild as a module (recommended)

3-step bootstrap procedure

e Step 1: Use pip to obtain a temporary installation of EasyBuild

export TMPDIR=/tmp/SUSER/easybuild

pip3 install --prefix $TMPDIR easybuild

update environment to use this temporary EasyBuild installation
export PATH=S$STMPDIR/bin:S$PATH

export PYTHONPATH=$TMPDIR/lib/python3.9/site-packages:SPYTHONPATH
instruct EasyBuild to use python3 command

export EB PYTHON=python3

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation 27

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Installing EasyBuild as a module (recommended)

3-step bootstrap procedure

e Step 2: Use EasyBuild to install EasyBuild (as a module) in home directory

eb --install-latest-eb-release --prefix SHOME/easybuild
and then clean up the temporary EasyBuild installation

rm -r STMPDIR

e Step 3: Load EasyBuild module to use final installation

module use SHOME/easybuild/modules/all

module load EasyBuild

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation 28
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Verifying the EasyBuild installation

e Check EasyBuild version:

eb --version

e Show help output (incl. long list of supported configuration settings)

eb —--help

e Show the current (default) EasyBuild configuration:

eb --show-config
e Show system information:

eb --show-system-info

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation 29
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Updating EasyBuild

e Updating EasyBuild (in-place) that was installed with pip:
pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)
e Use current EasyBuild to install latest EasyBuild release as a module:
eb —--install-latest-eb-release

o This is not an in-place update, but a new EasyBuild installation!
o You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/4.5.4

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation 30
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Configuring EasyBuild

EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool
e .. butitwill (ab)use SHOME/.local/easybuild to install software into, etc.

e Itis strongly recommended to configure EasyBuild properly!

e Main questions you should ask yourself:

o Where should EasyBuild install software (incl. module files)?

o Where should auto-downloaded sources be stored?

o Which filesystem is best suited for software build directories (I/0O-intensive)?

https://easybuilders.qithub.io/easybuild-tutorial/2022-isc22/confiquration 31
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Primary configuration settings

Most important configuration settings: (strongly recommended to specify the ones in bold!)
o Modules tool + syntax (modules-tool + module-syntax)
o Software + modules installation path (installpath)”
o Location of software sources “cache” (sourcepath)”
o Parent directory for software build directories (buildpath)”
o Location of easyconfig files archive (repositorypath)”
o Search path for easyconfig files (robot-paths + robot)

o Module naming scheme (module-naming-scheme)
Several locations” (+ others) can be controlled at once via prefix configuration setting

Full list of EasyBuild configuration settings (~270) is available via eb --help

32

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Configuration levels

e There are 3 different configuration levels in EasyBuild:
o Configuration files
o Environment variables
o Command line options to the eb command

e Each configuration setting can be specified via each “level” (no exceptions!)

e Hierarchical configuration:
o Configuration files override default settings
o Environment variables override configuration files

o eb command line options override environment variables

33

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

EasyBuild configuration files

e EasyBuild configuration files are in standard INI format (key=value)

e EasyBuild considers multiple locations for configuration files:

o User-level: SHOME/ .config/easybuild/config.cfg (Orvia $XDG CONFIG HOME)
o System-level: /etc/easybuild.d/*.cfg (Orvia $XDG CONFIG DIRS)

o Seeoutputofeb --show-default-configfiles

e Qutput produced by eb --confighelpis a good starting point
e Typically for “do once and forget” static configuration (like modules tool to use, ...)

e EasyBuild configuration files and easyconfig files are very different things!

34

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

$EASYBUILD * environment variables

e Very convenient way to configure EasyBuild

e Thereis an $EASYBUILD * environment variable for each configuration setting

O

O

O

O

Use all capital letters
Replace every dash (-) character with an underscore ()
Prefix with EASYBUILD

Example: module-syntax — $EASYBUILD MODULE SYNTAX

e Common approach: using a shell script or module file to (dynamically) configure EasyBuild

https://easybuilders.qithub.io/easybuild-tutorial/2022-isc22/confiquration 35

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Command line options for eb command

e Configuration settings specified as command line option always “win"”

e Use double-dash + name of configuration setting, like ——module-syntax

e Some options have a corresponding shorthand (eb --robot==eb -r)

e In some cases, only command line option really makes sense (like eb --version)

e Typically used to control configuration settings for current EasyBuild session;

for example: eb --installpath /tmp/$USER

https://easybuilders.qithub.io/easybuild-tutorial/2022-isc22/confiquration 36
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Inspecting the current configuration

e |t can be difficult to remember how EasyBuild was configured

e Output produced by eb --show-config is useful to remind you
e Shows configuration settings that are different from default

e Always shows a couple of key configuration settings

e Also shows on which level each configuration setting was specified
e Full current configuration: eb --show-full-config

https://easybuilders.qithub.io/easybuild-tutorial/2022-isc22/confiquration 37
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Inspecting the current configuration: example

$ cat $SHOME/.config/easybuild/config.cfg
[config]
prefix=/apps

$ export EASYBUILD BUILDPATH=/tmp/$USER/build

$ eb --installpath=/tmp/$USER --show-config
Current EasyBuild configuration
(C: command line argument, D: default value,

E: environment variable, F: configuration file)

buildpath (E) = /tmp/example/build

containerpath (F) = /apps/containers

installpath (C) = /tmp/example

packagepath (F) = /apps/packages

prefix (F) = /apps

repositorypath (F) = /apps/ebfiles repo

robot-paths (D) = /home/example/.local/easybuild/easyconfigs

sourcepath (F) = /apps/sources
https.://easybuilders.qgithub.io/easybuild-tutorial/2022-isc22/configuration 38

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Minimal EasyBuild configuration for hands-on

e Use home directory as main prefix directory
(location for installed software, downloaded sources, ...)

export EASYBUILD PREFIX=SHOME/easybuild

e Use local temporary directory for build directories (important!)

export EASYBUILD BUILDPATH=/tmp/SUSER

e Ensure prepared software stack is visible via “module avail”

module use /easybuild/modules/all

https://easybuilders.qithub.io/easybuild-tutorial/2022-isc22/confiquration 39
e

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Basic usage of EasyBuild

Use eb command to run EasyBuild

Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

--robot (-r) option is required to also install missing dependencies (and toolchain)

Typical workflow:

O

Find or create easyconfig files to install desired software
Inspect easyconfigs, check missing dependencies + planned installation procedure
Double check current EasyBuild configuration

Instruct EasyBuild to install software (while you enjoy a coffee... or two)

40

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Specifying easyconfigs to use

e There a different ways to specify to the eb command which easyconfigs to use

o Specific relative/absolute paths to (directory with) easyconfig files
o Names of easyconfig files (triggers EasyBuild to search for them)

o Easystack file to specify a whole stack of software to install (via eb --easystack)

e Easyconfig filenames only matter when missing dependencies need to be installed

o “Robot” mechanism searches based on dependency specs + easyconfig filename

e cb --search can be used to quickly search through available easyconfig files

41

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Inspecting easyconfigs via eb --show-ec

e To see the contents of an easyconfig file, you can use eb --show-ec

e No need to know where it is located, EasyBuild will do that for you!

S eb --show-ec TensorFlow-2.6.0-foss-2021la.eb

easyblock = 'PythonBundle'

name = 'TensorFlow'

version = '2.6.0"

homepage = 'https://www.tensorflow.org/"

description = "An open-source software library for Machine Intelligence"
toolchain = {'name': 'foss', 'version': '2021la'}

toolchainopts = {'pic': True}

42

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Checking dependencies via eb --dry-run

To check which dependencies are required, you can use eb --dry-run(oreb -D):

e Provides overview of all dependencies (both installed and missing)

e Including compiler toolchain and build dependencies

$ eb SAMtools-1.14-GCC-11.2.0.eb -D

*[x]
*[x]
*[x]
*[x]

SCFGS/n/ncurses/ncurses—-6.2-GCCcore-11.2.0.eb (module: ncurses/6.2-GCCcore-11.2.0)
SCFGS/p/pkg-config/pkg-config-0.29.2.eb (module: pkg-config/0.29.2)
SCFGS/0/0penSSL/OpenSSL-1.1.eb (module: OpenSSL/1.1)
SCFGS/c/cURL/cURL-7.78.0-GCCcore-11.2.0.eb (module: cURL/7.78.0-GCCcore-11.2.0)
SCFGS/s/SAMtools/SAMtools-1.14-GCC-11.2.0.eb (module: SAMtools/1.14-GCC-11.2.0)

43

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Checking missing dependencies via eb --missing

To check which dependencies are still missing, use eb --missing (0oreb -M):

e Takes into account available modules, only shows what is still missing

$ eb PyTables-3.6.1-foss-2021b.eb -M

3 out of 69 required modules missing:

* 1.LZ0/2.10-GCCcore-11.2.0 (LZO-2.10-GCCcore-11.2.0.eb)

* Blosc/1.21.1-GCCcore-11.2.0 (Blosc-1.21.1-GCCcore-11.2.0.eb)

* PyTables/3.6.1-foss-2021b (PyTables-3.6.1-foss-2021b.eb)

44

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Inspecting software install procedures

EasyBuild can quickly unveil how exactly it would install an easyconfig file

Via eb --extended-dry-run (Oreb -x)

Produces detailed output in a matter of seconds

Software is not actually installed, all shell commands and file operations are skipped!
Some guesses and assumptions are made, so it may not be 100% accurate...

Any errors produced by the easyblock are reported as being ignored

Very useful to evaluate changes to an easyconfig file or easyblock!

45

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Inspecting software install procedures: example

$ eb Boost-1.77.0-GCC-11.2.0.eb -x

preparing... [DRY RUN]

[prepare step method]
Defining build environment, based on toolchain (options) and specified dependencies...

Loading toolchain module...

module load GCC/11.2.0

Loading modules for dependencies...
module load bzip2/1.0.8-GCCcore-11.2.0

module load zlib/1.2.11-GCCcore-11.2.0
module load XZ/5.2.5-GCCcore-11.2.0

46

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Inspecting software install procedures: example

$ eb Boost-1.77.0-GCC-11.2.0.eb -x

Defining build environment...

export CXX='g++'

export CXXFLAGS='-02 -ftree-vectorize -march=native -fno-math-errno -fPIC'

configuring... [DRY RUN]

[configure step method]
running command "./bootstrap.sh --with-toolset=gcc
-—-prefix=/tmp/example/Boost/1.77.0-GCC-11.2.0 --without-libraries=python,mpi"
(in /tmp/example/build/Boost/1.77.0/GCC-11.2.0/Boost-1.77.0)

47

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

Inspecting software install procedures: example

$ eb Boost-1.77.0-GCC-11.2.0.eb -x

[sanity check step method]
Sanity check paths - file ['files']
* lib/libboost system-mt-x64.so
* lib/libboost system.so
* lib/libboost thread-mt-x64.so
Sanity check paths - (non-empty) directory ['dirs']
* include/boost
Sanity check commands

(none)

48

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

®
’0 Isc High Performance

The HPC Event.

Agenda (all times are CEST)

e [14:50-15:30] Installing software with EasyBuild + troubleshooting

e [15:30-16:00] Adding support for additional software

e [16:00-16:30] (coffee break)

e [16:30-16:50] Module naming schemes (incl. hierarchical)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22 49
e

https://easybuild.io/tutorial/isc22

Installing software with EasyBuild

e To install software with EasyBuild, just run the eb command:
0 eb SAMtools-1.14-GCC-11.2.0.eb

e If any dependencies are still missing, you will need to also use --robot:
O eb BCFtools-1.14-GCC-11.2.0.eb —--robot

e To see more details while the installation is running, enable trace mode:
0 eb BCFtools-1.14-GCC-11.2.0.eb —--robot --trace

e To reinstall software, use eb --rebuild (or eb --force)

50

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

Step-wise installation procedure

L: parse easyconfig XVII: test cases
d: fetch sources XVI: packaging ,j
dl: check readiness XV: permissions ,5
IV: unpack sources XIV: env. module j
(5

i V: apply patches XIII: cleanup j

L VI: prepare XlI: sanity check ‘S

L VII: configure XI: extensions j
VIII: build X: install J
L—-» IX: test _J

e EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

e Easyblock completes the implementation, override or extends installation steps where needed

51

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

Using software installed with EasyBuild

To use the software you installed with EasyBuild, load the corresponding module:
inform modules tool about modules installed with EasyBuild
module use $HOME/easybuild/modules/all
check for available modules for BCFtools

module avail BCFtools

load BCFtools module to “activate” the installation

module load BCFtools/1.14-GCC-11.2.0

52

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

Stacking software installations

e |t's easy to “stack” software installed in different locations

EasyBuild doesn't care much where software is installed

As long as the required modules are available to load, it can pick them up

e End users can easily manage a software stack on top of what's installed centrally!
module use /easybuild/modules/all

eb --installpath SHOME/easybuild my-software.eb

53

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

Troubleshooting failing installations

e Sometimes stuff still goes wrong...
e Being able to troubleshoot a failing installation is a useful/necessary skill

e Problems that occur include (but are not limited to):
o Missing source files
o Missing dependencies (perhaps overlooked required dependencies)
o Failing shell commands (non-zero exit status)
o Running out of memory or storage space

o Compiler errors (or crashes)

e FEasyBuild keeps a thorough log for each installation which is very helpful

54

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

Troubleshooting: error messages

When EasyBuild detects that something went wrong, it produces an error
Very often due to a shell command that produced a non-zero exit code...

Sometimes the problem is clear directly from the error message:

== building...

== FAILED: Installation ended unsuccessfully (build directory:
/tmp/example/example/1.0/GCC-11.2.0) :

build failed (first 300 chars): cmd "make" exited with exit code 2 and output:
/usr/bin/g++ -02 -ftree-vectorize -march=native -std=c++14 -c -0 core.o core.cpp

g+t+: error: unrecognized command line option '-std=c++14' (took 1 sec)
In some cases, the error message itself does not reveal the problem...

55

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

Troubleshooting: log files

e FEasyBuild keeps track of the installation in a detailed log file

e During the installation, it is stored in a temporary directory:

S eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

e Includes executed shell commands and output, build environment, etc.
e More detailed log file when debug mode is enabled (debug configuration setting)
e Thereis a log file per EasyBuild session, and one per performed installation

e When an installation completes successfully,
the log file is copied to a subdirectory of the software installation directory

56

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

Troubleshooting: navigating log files

e EasyBuild log files are well structured, and fairly easy to search through
e Example log message, showing prefix (“== "), timestamp, source location, log level:

== 2022-05-25 13:11:19,968 run.py:222 INFO running cmd: make -3 9
e Different steps of installation procedure are clearly marked:
== 2022-05-25 13:11:48,817 example INFO Starting sanity check step

e To find actual problem for a failing shell command, look for patterns like:

o ERROR
o Error 1
o error:

o failure

o not found
o No such file or directory
o Segmentation fault

57

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

Troubleshooting: inspecting the build directory

e EasyBuild leaves the build directory in place when the installation failed

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/build/example/1.0/GCC-11.2.0): build failed ...

e (Can be useful to inspect the contents of the build directory for debugging

e For example:
o Check config.log when configure command failed

o Check cMakeFiles/CMakeError.log when cmake command failed (good luck...)

58

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

Troubleshooting: hands-on exercise

Highly recommended to try the exercise on tutorial website!

Try to fix the problems you encounter with the “broken” easyconfig file...

S eb subread.eb

== FAILED: Installation ended unsuccessfully (build directory:
/tmp/example/Subread/2.0.3/GCC-8.5.0): build failed (first 300 chars):
Couldn't find file subread-2.0.3-source.tar.gz anywhere, and downloading

it didn't work either...

Paths attempted (in order):

59

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

®
‘. Isc High Performance

The HPC Event.

Agenda (all times are CEST)

e [15:30-16:00] Adding support for additional software

e [16:00-16:30] (coffee break)

e [16:30-16:50] Module naming schemes (incl. hierarchical)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22 60
e

https://easybuild.io/tutorial/isc22

Adding support for additional software

e Everyinstallation performed by EasyBuild requires an easyconfig file

e Easyconfig files can be:
o Included with EasyBuild itself (or obtained elsewhere)
o Derived from an existing easyconfig (manually or automatic)

o Created from scratch

Most easyconfigs leverage a generic easyblock

Sometimes using a custom software-specific easyblock makes sense...

61

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Easyblocks vs easyconfigs

e When can you get away with using an easyconfig leveraging a generic easyblock?

e When is a software-specific easyblock really required?

e Easyblocks are “implement once and forget”

e FEasyconfig files leveraging a generic easyblock can become too involved (subjective)

e Reasons to consider implementing a custom easyblock:

©)

O

'critical’ values for easyconfig parameters required to make installation succeed
custom (configure) options related to toolchain or included dependencies
interactive commands that need to be run

having to create or adjust specific (configuration) files

'hackish' usage of a generic easyblock

complex or very non-standard installation procedure

62

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Writing easyconfig files

e C(ollection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

e Some easyconfig parameters are mandatory, and must always be defined:

name, version, homepage, description, toolchain

e Commonly used easyconfig parameters (but strictly speaking not required):

0 easyblock(by default derived from software name)

0 versionsuffix

o source_urls sources, patches, checksums

0 dependencies builddependencies

0 preconfigopts configopts prebuildopts buildopts, preinstallopts installopts

0 sanity check pathssanity check commands

63

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Generating tweaked easyconfig files

e Trivial changes to existing easyconfig files can be done automatically

e Bumping software version: eb example-1.0.eb --try-software-version 1.1
e Changing toolchain (version): eb example.eb --try-toolchain GCC,11.2.0

e Changing specific easyconfig parameters (limited): eb --try-amend ...

e Note the “try” aspect: additional changes may be required to make installation work

e EasyBuild does save the so generated easyconfig files in the easybuild subdirectory

of the software installation directory and in the easyconfig archive.

64

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Copying easyconfig files

e Small but useful feature: copy specified easyconfig file via eb --copy-ec
e Avoids the need to locate the file first via eb --search
e Typically used to create a new easyconfig using existing one as starting point

e Example:
$ eb —--copy-ec SAMtools-1.14-GCC-11.2.0.eb SAMtools.eb

SAMtools-1.14-GCC-11.2.0.eb copied to SAMtools.eb

65

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Hands-on: creating easyconfig files

e Step-wise example + exercise of creating an easyconfig file from scratch
e For fictitious software packages: eb-tutorial + py-eb-tutorial

e Great exercise to work through these yourself!

name = 'eb-tutorial'

version = "'"1.0.1"

homepage = 'https://easybuilders.github.io/easybuild-tutorial’
description = "EasyBuild tutorial example"

66

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Agenda (all times are CEST)

Isc High Performance

The HPC Event.

e [15:30-16:00] ‘
o [16:00-16:30] (coffee break) /\'(

e [16:30-16:50] Module naming schemes (incl. hierarchical) /
e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

67

https://easybuild.io/tutorial/isc22

®
‘. Isc High Performance

The HPC Event.

Agenda (all times are CEST)

e [16:30-16:50] Module naming schemes (incl. hierarchical)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22 68
e

https://easybuild.io/tutorial/isc22

Flat vs hierarchical module naming schemes

e Handful of supported module naming schemes (MNS), easysuildmns is the default

e Flat module naming scheme (like easyBuiidmns)

o Clear mapping of easyconfig filename to name of generated module file

o All modules immediately available for loading

e Hierarchical scheme typically has 3 levels .@ —_—
o

core level for things like compilers

. compiler
o compiler level @

o MPllevel e

MPI
ScalAPACK/2.1.0

69

o Use “gateway modules” to access

different levels

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

Pros and cons of using a flat vs hierarchical MNS

e Flat MNS
all modules visible (can be overwhelming)
+ guaranteed unique
— long module names that can be confusing
— potential compatibility issues unless you are careful

e Hierarchical MNS
+ short/clean module names (and no visible toolchains)
less visible modules (need to use module spider+module avail)
automatic swapping with Lmod when changing compiler/mpi
+ modules that can be loaded are compatible with each other
— requires gateway modules which might have little meaning for users

70

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

Custom module naming schemes with EasyBuild

e You can also create your own module naming scheme (e.g., lower-case only)

o Implement Python class that derives from the general ModuleNamingScheme class
o Best to start from one of the existing schemes

o There are (a lot) more things to tweak with hierarchical module naming schemes

e To configure EasyBuild to use your custom module naming scheme:

export EASYBUILD INCLUDE MODULE NAMING SCHEMES=SHOME/easybuild/example mns.py
export EASYBUILD MODULE NAMING SCHEME=ExampleMNS

e Use dry-run mode to test it, e.g.,

eb SciPy-bundle-2021.10-foss-2021b.eb -D

71

https://docs.easybuild.io/en/latest/api/easybuild.tools.module_naming_scheme.mns.html#easybuild.tools.module_naming_scheme.mns.ModuleNamingScheme
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

Hands-on example: installing HDF5 in an HMNS

e We must avoid mixing modules from a flat and hierarchical MNS!
module unuse SMODULEPATH

e Configure our setup to reuse the existing software installations
export EASYBUILD_INSTALLPATH_SOFTWARE=/easybuild/Software

export EASYBUILD MODULE NAMING SCHEME=HierarchicalMNS

export EASYBUILD INSTALLPATH MODULES=SHOME/hmns/modules

e Re-generate all modules for HDF5 using the new scheme (42 modules)
eb HDF5-1.12.1-gompi-2021b.eb --robot --module-only

e Explore the new hierarchy

module use SHOME/hmns/modules/all/Core

72

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

®
'. Isc High Performance

The HPC Event.

Agenda (all times are CEST)

e [15:30-16:00] Adding support for additional software
e [16:00-16:30] (coffee break)

e [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI
e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22 73
e

https://easybuild.io/tutorial/isc22

EasyBuild at Julich Supercomputing Centre

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Julich Supercomputing Centre

e JSCis a German supercomputing centre since 1987

o About 250 experts for all aspects of supercomputing and simulation
sciences

IJ JULICH

Forschungszentrum

75

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Julich Supercomputing Centre

e JSCis a German supercomputing centre since 1987

o About 250 experts for all aspects of supercomputing and simulation
sciences

e Currently 3 primary systems:
o JUWELS - 70 Petaflops, #8 in Top500 ()
o JURECA-DC - 3.54 (CPU) + 14.98 (GPU) + 5 (KNL) Petaflops
o JUSUF - AMD, V100 GPU. Interactive workflows and community services

IJ JULICH

Forschungszentrum

76

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

EasyBuild at JSC

e Used for production software stack at JSC since 2014

IJ JULICH

Forschungszentrum

77

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

EasyBuild at JSC

e Used for production software stack at JSC since 2014

e Geared towards average user experience
o Hide lots of indirect software
o Lots of toolchains => Module hierarchy

o Renaming some modules, Lmod tweaks

@) JULICH :

Forschungszentrum

78

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

EasyBuild at JSC

e Used for production software stack at JSC since 2014

e Geared towards average user experience
o Hide lots of indirect software
o Lots of toolchains => Module hierarchy
o Renaming some modules, Lmod tweaks
e Custom MNS, toolchains, easyconfigs, easyblocks
o Maintenance and contribution issue

o Working hard to minimise this

IJ JULICH

Forschungszentrum

79

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Upgrading and retiring software

e Provide latest software to new projects by default

o Stages concept

o Updates once per year

o Encourages users to adopt latest software & dependencies
(performance, bug fixes,...)

¢)JiLicH

Forschungszentrum

80

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

IJ JULICH

Upgrading and retiring software

Provide latest software to new projects by default

o Stages concept

o Updates once per year

o Encourages users to adopt latest software & dependencies
(performance, bug fixes,...)

Give indirect access to "retired" software

Forschungszentrum

81

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Leveraging hooks for users & maintainers

e Very powerful alternative to customisations
o Much more automated and flexible

o Easier to maintain (particularly for easyconfigs)

IJ JULICH

Forschungszentrum

82

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Leveraging hooks for users & maintainers

e Very powerful alternative to customisations
o Much more automated and flexible

o Easier to maintain (particularly for easyconfigs)

e Hooks to enable user space installations
o @Guide people on how to do this “properly”

o Installation hierarchy: system — group —user

IJ JULICH

Forschungszentrum

83

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Integration of EasyBuild in EESSI

EEEEEEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Presented by Sebastian Achilles

84

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_eessi

Optimised scientific software everywhere without building .
or tuning: that's EESSI!

e The challenge:
Same software everywhere (HPC, Cloud, servers, laptops) EESSI
Optimized for specific CPUs, well tested, works on different OSs

Plug ‘n play, limited setup

e The solution: EESSI - European Environment for Scientific Software Installations
“Streams” (scientific) software installations on-demand

Any machine, anywhere, nearly instantly available
https.//www.eessi-hpc.org

https://eessi.github.io/docs
S

https://www.eessi-hpc.org
https://eessi.github.io/docs

High-level overview of the EESSI project .

Host OS Compatibility layer

rovides ° gBﬂtUﬂ
P Levelling the ground across client OSs ,
network

& GPU

drivers,
resource
CernVM-FS

manager
(Slurm),

Host operating system (Linux, WSL, macOS)

https.//www.eessi-hpc.org
LE] EXDrs] ARM

https://eessi.github.io/docs se

https://www.eessi-hpc.org
https://eessi.github.io/docs

EESSI access

-
d
7’
7
/
/
/

HPC cluster X

-

-
+

b B

— 19—

CernVM-FS

—
6D 4 Squid Se

reverse
Squid forward proxy
proxy

Cloud A

icons via https://www.flaticon.com/authors/smashicons,

CernVM-FS
Stratum 0 \E CernVM-FS
https://cvmis.readthedocs.io

e Global distribution of software installations
e Centrally managed software stack

e Redundant network of “mirrors”

e Multiple levels of caching

e Same software stack everywhere:

laptops, HPC clusters, cloud VMs, ...

87

https://cvmfs.readthedocs.io
https://www.flaticon.com/authors/smashicons

)

If EESSI is already available: just set up your environment by sourcing a script EESSI
As a system administrator, to make EESSI available: .

o Only need to install CernVM-FS + EESSI configuration package l ‘,

o Should also consider setting up squid proxy and maybe own Stratum-1 server CeV-ES

As an end user on an HPC system, to access EESSI without having admin rights: r
o Run a container image via Singularity that includes CernVM-FS to access EESSI p A

o See instructions at https://eessi.github.io/docs/pilot

As a software developer in a Cl environment like GitHub Actions O

o {

o Use EESSI action in your workflow to leverage the available software in your tests

https://eessi.github.io/docs/pilot

EESSI not ready for production yet, but testing + feedback is welcome!

Website: https://www.eessi-hpc.org \/

Documentation: https://eessi.qithub.io/docs EESSI

Introduction to EESSI (EUM’21): htips://www.youtube.com/watch?v=1CXwzIW_MsU

Join the EESSI mailing list and Slack: https://www.eessi-hpc.org/join

Monthly update meetings, open to join for anyone interested
https://github.com/EESSI/meetings/wiki

EESSI hackathons (Dec’21 + Jan’22, plans for more):
https://qithub.com/EESSI/hackathons

https://www.eessi-hpc.org
https://eessi.github.io/docs
https://www.youtube.com/watch?v=1CXwzIW_MsU
https://www.eessi-hpc.org/join
https://github.com/EESSI/meetings/wiki
https://github.com/EESSI/hackathons
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_eessi

Integration of EasyBuild in LUMI

by Kurt Lust

LUMI User Support Team (LUST) & University of Antwerp

90

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

What is LUMI?

e LUMIis one of the EuroHPC JU pre-exascale systems

e |ocatedinthe CSC Kajaani data centre, hosted by a
consortium of 10 countries who shared the investment
with EuroHPC JU.

e HPE Cray EX system using SUSE Linux/COS and the
HPE Cray Programming Environment (PE)

e (Compute resources:
o GPU partition: 2560 nodes with 1 AMD Trento CPU and 4 AMD MI250X GPUs
m GPU-first node, SlingShot 11 interconnect attached to the GPUs
m Cache-coherent unified memory
o CPU partition: 1536 nodes with 2 64-core AMD Zen3 CPUs
Small interactive data analysis and visualisation partition (8 CPU-only nodes and 8
nodes with NVIDIA GPU)
o OpenShift/Kubernetes partition
o Lustre storage + Ceph object storage

91
s

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Challenges

e Integrate with the HPE Cray PE, which is installed with the OS and not with the user
applications stack.
o EasyBuild common toolchains pose problems and have little support for AMD GPUs
e Heterogeneous environment and fast evolving software
o Software stack updates measured in updates/year rather than years/update
e Distributed support effort
o Central LUMI User Support Team only 9 FTE, and they are employees of institutions in the
consortium countries and not of CSC
o Consortium countries should also provide support
e Combining distributed user management with a small central support team with little
access to user data creates a software license management nightmare
e Need for customisation

92

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Building block 1: Lmod to organise software stacks

e Versatile and well supported in EasyBuild (and Spack), and by the HPE Cray PE.
e Used Lmod hierarchy to implement software stacks

o CrayEnv: "enriched" Cray Programming Environment

Management of Cray PE target modules

Some additional tools on top of the OS

o LUMI software stack: 2-level hierarchy

Versions aligned with the versions of the Cray PE (21.08, 21.12)
Second level: partition module loads stack for a particular architecture

Automatic selection of the partition module, but can be overwritten, e.g., for
cross-compiling

Meta-partitions for special needs, e.g., software installed once for all architectures

93

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Building block 2: EasyBuild

e EasyBuild gives a very precise description of the installation process
o Hence a good way of passing installation instructions to someone
e Configuration of each individual installation fully described by easyconfig file, not by
command line arguments
e Configuration module integrates EasyBuild with the LUMI software stack
o Environment variable points to the user installation
o User installation in the module search path
o 3 EasyBuild configuration modules configure EasyBuild to install software in the right
location:
m EasyBuild-production, EasyBuild-infrastructure : system stack
m EasyBuild-user for the user configuration
e Fix the version of EasyBuild for each software stack

94

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Custom toolchains

e Common toolchains not fit for use on LUMI
o Have support for the Cray and AMD compilers
o Open MPI (foss) difficult to configure for LUMI, and no AMD GPU support anyway
o Intel compilers have become a problem on AMD hardware

e Implement custom toolchains on top of Cray PE compilers

o Build on CSCS implementation and an older implementation included in EasyBuild,
but made several refinements

o Compilers etc. not installed through EasyBuild

o Replace the top level Cray PE module (PrgEnv-*) with one generated and managed
through EasyBuild but otherwise use modules on the system

95

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

External modules

e Modules not installed through EasyBuild
Lack:
o The metadata provided in modules generated by EasyBuild through
the $EBROOT and $EBVERSION environment variables
o A corresponding easyconfig file to tell EasyBuild about further dependencies
e Use:
dependencies = [('cray-fftw', EXTERNAL_MODULE)]
dependencies = [('cray-fftw/3.3.8.12', EXTERNAL_MODULE)]
e But metadata can be added through various mechanisms
o Default metadata definition file included with EasyBuild (outdated)
o Own metadata definition files
o Discovery mechanism: EasyBuild recognises certain environment variables used by
Cray modules

96

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Software-specific easyblocks

e Probably the major nuisance when using EasyBuild on Cray systems
o Several easyblocks contain code that only recognises certain compiler
toolchains and abort for others
o Some easyblocks detect dependencies through module names rather than
EBROOT/EBVERSION variables and hence may fail for external modules
e Maintenance is an issue
o Contributing back no guarantee that the support is maintained as testing is
impossible in the EasyBuild test environment
o Butthen you have to track changes yourself
e Tend to follow the CSCS approach and use generic easyblocks wherever possible,
and "fatter" easyconfig files.

97

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

®
'. Isc High Performance

The HPC Event.

Agenda (all times are CEST)

e [17:30-17:45] The EasyBuild community + contributing to EasyBuild

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22 98
e

https://easybuild.io/tutorial/isc22

The EasyBuild community

I 458

.

GitHub

52 slack

A % o
iy Viezndersn @ JULICH (HPCNow!)

e) —

% A o Aﬁié{mg
) FRED HUTCH BioCenter

. LUMI uio: BEAR

Documentation is read all over the world = SNIC JUS m

TEXAS A&M

HPC sites, consortia, and companies

TECHNISCHE 57;

Slack: >600 members, ~110 active members () e s Wl |SOCC
Tae C 2l . . .

per week, 277K messages I8 B 35 ety B8 wicrosot

Regular online conf calls... and we even meet in person sometimes!

99

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/community

Contributing to EasyBuild

There are several ways to contribute to EasyBuild, including:

Providing feedback (positive or negative)

Reporting bugs

Joining the discussions (mailing list, Slack, conf calls)

Sharing suggestions/ideas for enhancements & additional features
Contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

Extending & enhancing documentation

100

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

DON'T KNOW GIT?

GitHub integration features

YOU SHALLNOT PASS!!!

e EasyBuild has strong integration with GitHub, which facilitates contributions

e Some additional Python packages required for this: GitPython, keyring

e Also requires some additional configuration, incl. providing a GitHub token

e Enables creating, updating, reviewing pull requests using eb command!

e Makes testing contributions very easy (~2,500 easyconfig pull requests per year!)

e Extensively documented:

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html

101

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

Opening a pull request in 1,X X

mv sklearn.eb scikit-lea

mv scikit-learn*.eb easyb ikit-learn

git checkout develop && g develop
git checkout -b scikit lea ~2017b
git add easybuild/easyc it-learn

ikit-learn v0.19.1"
_2017b

git commit -m "{data

vr v »r U O U N

git push origin sc

+ log into GitHub to ac est (clickety, clickety...)

one single eb command metadata is automatically

no git commands derived from easyconfig

no GitHub interaction saves a lot of time!

eb --new-pr sklearn.eb

102

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

®
’. Isc High Performance

The HPC Event.

Agenda (all times are CEST)

e [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

https://easybuild.io/tutorial/isc22 103
e

https://easybuild.io/tutorial/isc22

Topics we didn’t cover...

e Implementing easyblocks

e Using easystacks to install a whole stack at once
e Using RPATH linking

e Using EasyBuild as a library

e Implementing hooks to customize EasyBuild

e Submitting installations as jobs on a cluster

e Building Docker/Singularity container images with EasyBuild (experimental)

https://docs.easybuild.io - https://easybuild.io/tutorial

104

https://docs.easybuild.io
https://easybuild.io/tutorial

#Feagbald vs @ Spack

EasyBuild: GPLv2 license - Spack: MIT/Apache 2.0 license

No stable releases yet for Spack (< 1.0), EasyBuild is stable since 2012

Roughly on par w.r.t. amount of supported software (but differences w.r.t. which software)
Targeted to different use cases: HPC support teams (EasyBuild) vs developers (Spack)
Both support running on top of Python 2.7 and 3.5+

macOS support in EasyBuild is limited (no toolchains/testing for macQOS)

Both projects are backed by an active & supportive community!

105

Lald vs € Spack

Some differences:
o Spack will install some packages from a binary cache.
o Fixed dependency/toolchain versions in EasyBuild vs flexible CLI and the
concretiser in Spack
o EasyBuild uses modules, in Spack this is only one of the mechanisms to activate
software
The naughty one: As Spack makes it so easy to create 100s of different configurations of a
package, it is the ideal tool to quickly fill up your file system.
For a more detailed (but somewhat outdated) comparison, see

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

106

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

Questions?

$
" Isc High Performance

The HPC Event.

e Website: https://easybuild.io

e Documentation: https://docs.easybuild.io

e Tutorials: https://easybuild.io/tutorial

e Yearly EasyBuild User Meeting: https://easybuild.io/eum

e Getting help:

o Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

o Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

o Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

107

https://easybuild.io
https://docs.easybuild.io
https://easybuild.io/tutorial
https://easybuild.io/eum
https://lists.ugent.be/wws/subscribe/easybuild
https://easybuild.slack.com
https://easybuild.io/join-slack
https://github.com/easybuilders/easybuild/wiki/Conference-calls
https://easybuild.io/tutorial/isc21

