
29 May 2022
https://easybuild.io/tutorial/isc22

EasyBuild tutorial
ISC’22

Sebastian Achilles (JSC) - Kurt Lust (Univ. of Antwerp)
 Alan O’Cais (CECAM) - Kenneth Hoste (HPC-UGent)

https://easybuild.io/tutorial/isc22

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

2https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

● Sunday 29th of May 2022, 14:00 - 18:00 CEST

● Tutorial website: https://easybuild.io/tutorial/isc22

● Please join the #tutorial-isc22 channel in the EasyBuild Slack to ask questions!

● Prepared environment for hands-on demos & exercises

Practical information

3https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

https://easybuild.io/tutorial/isc22
https://easybuild.slack.com/archives/C03FJCGJ1DF
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

● Questions or problems?
Speak up in #tutorial-isc22 on EasyBuild Slack!

● Join via https://easybuild.io/join-slack

● Use threads to avoid overflowing the channel!

4

Q&A via dedicated channel in EasyBuild Slack

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

https://easybuild.io/join-slack
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

● Small polls will be posted in the #tutorial-isc22 Slack channel.

● Vote for one (or more) answers using the corresponding emoji !

5

Emoji polls in Slack

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

● Small Rocky 8 cluster (in the cloud)

● You need to create an account!
○ Signup: https://mokey.isc22.learnhpc.eu/auth/signup
○ Accounts will only be approved for access on 29 May 2022,

so please record your username/password !
■ Reset Password link does not work, instead raise any login problem in Slack

● Access via ssh or web browser (pick one and stick to it!)
○ Shell access: ssh isc22.learnhpc.eu
○ Via browser: https://isc22.learnhpc.eu

● System will be up until the end of the conference (18:15 CEST, Thursday 2 June 2022)

Prepared environment

6https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

https://mokey.isc22.learnhpc.eu/auth/signup
https://mokey.isc22.learnhpc.eu/auth/forgotpw
https://isc22.learnhpc.eu/
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/practical_info

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

7https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python (2.7, 3.5+)

● Brief history:

○ Created in-house at HPC-UGent in 2008

○ First released publicly in Apr’12 (version 0.5)

○ EasyBuild 1.0.0 released in Nov’12 (during SC12)

○ Worldwide community has grown around it since then!

https://easybuild.io

https://docs.easybuild.io

https://github.com/easybuilders

https://easybuild.io/join-slack

Twitter: @easy_build

What is EasyBuild?

8https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuild.io
https://docs.easybuild.io
https://github.com/easybuilders
https://easybuild.io/join-slack
https://twitter.com/easy_build
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell

9https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, …

● No admin privileges are required (only write permission to installation prefix)

● Highly configurable, easy to extend, support for hooks, easy customisation

● Detailed logging, fully transparent via support for “dry runs” and trace mode

● Support for using custom module naming schemes (incl. hierarchical)

Key features of EasyBuild (1/2)

10https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, …)

● Actively developed and supported by worldwide community

● Frequent stable releases since 2012 (every 6 - 8 weeks)

● Comprehensive testing: unit tests, testing contributions, regression testing

● Various support channels (mailing list, Slack, conf calls) + yearly user meetings

Key features of EasyBuild (2/2)

11https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Performance

● Strong preference for building software from source

● Software is optimized for the processor architecture of build host (by default)

Reproducibility

● Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

● Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort

● Development is highly driven by EasyBuild community

● Lots of active contributors, integration with GitHub to facilitate contributions

Focus points in EasyBuild

12https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● EasyBuild is not YABT (Yet Another Build Tool)

○ It does not try to replace CMake, make, pip, etc.

○ It wraps around those tools and automates installation procedures

● EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, …)

○ You should still install some software via OS package manager: OpenSSL, Slurm, etc.

● EasyBuild is not a magic solution to all your (software installation) problems

○ You may still run into compiler errors (unless somebody worked around it already)

What EasyBuild is not

13https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● It is important to briefly explain some terminology often used in EasyBuild

● Some concepts are specific to EasyBuild: easyblocks, easyconfigs, …

● Overloaded terms are clarified: modules, extensions, toolchains, …

EasyBuild terminology

14https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● The EasyBuild framework is the core of EasyBuild

● Collection of Python modules, organised in packages

● Implements common functionality for building and installing software

● Support for applying patches, running commands, generating module files, ...

● Examples: easybuild.toolchains, easybuild.tools, …

● Provides eb command, but can also be leveraged as a Python library

● GitHub repository: https://github.com/easybuilders/easybuild-framework

EasyBuild terminology: framework

15https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://github.com/easybuilders/easybuild-framework
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● A Python module that implements a specific software installation procedure

○ Can be viewed as a “plugin” to the EasyBuild framework

● Generic easyblocks for “standard” stuff: cmake + make + make install, Python packages, etc.

● Software-specific easyblocks for complex software (OpenFOAM, TensorFlow, WRF, …)

● Installation procedure can be controlled via easyconfig parameters

○ Additional configure options, commands to run before/after build or install command, ...

○ Generic easyblock + handful of defined easyconfig parameters is sufficient to install a lot of software

● GitHub repository: https://github.com/easybuilders/easybuild-easyblocks

● Easyblocks do not need to be part of the EasyBuild installation (see --include-easyblocks)

EasyBuild terminology: easyblock

16https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://github.com/easybuilders/easybuild-easyblocks
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● Text file that specifies what EasyBuild should install (in Python syntax)

● Collection of values for easyconfig parameters (key-value definitions)

● Filename typically ends in ‘.eb’

● Specific filename is expected in some contexts (when resolving dependencies)

○ Should match with values for name, version, toolchain, versionsuffix

○ <name>-<version>-<toolchain><versionsuffix>.eb

● GitHub repository: https://github.com/easybuilders/easybuild-easyconfigs

EasyBuild terminology: easyconfig file

17https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://github.com/easybuilders/easybuild-easyconfigs
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: easystack file

18

● New concept since EasyBuild v4.3.2 (Dec’20), experimental feature

● Concise description for software stack to be installed (in YAML syntax)

● Basically specifies a set of easyconfig files (+ associated info)

● Still a work-in-progress, only basic functionality implemented currently

● More info: https://docs.easybuild.io/en/latest/Easystack-files.html

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://docs.easybuild.io/en/latest/Easystack-files.html
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● Additional software that can be installed on top of other software

● Common examples: Python packages, Perl modules, R libraries, …

● Extensions is the general term we use for this type of software packages

● Can be installed in different ways:

○ As a stand-alone software packages (separate module)

○ In a bundle together with other extensions

○ As an actual extension, to provide a “batteries included” installation

EasyBuild terminology: extensions

19https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● Software that is required to build/install or run other software

● Build dependencies: only required when building/installing software (not to use it)

○ Examples: CMake, pip, pkg-config, ...

● Run-time dependencies: (also) required to use the installed software

○ Examples: Python, Perl, R, ...

● Link-time dependencies: libraries that are required by software to link to

○ Examples: glibc, OpenBLAS, FFTW, ...

● Currently in EasyBuild: no distinction between link-time and run-time dependencies

EasyBuild terminology: dependencies

20https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: toolchains

21

● Compiler toolchain: set of compilers + libraries for MPI, BLAS/LAPACK, FFT, …

● Toolchain component: a part of a toolchain (compiler component, etc.)

● Full toolchain: C/C++/Fortran compilers + libraries for MPI, BLAS/LAPACK, FFT

● Subtoolchain (partial toolchain): compiler-only, only compiler + MPI, etc.

● System toolchain: use compilers (+ libraries) provided by the operating system

● Common toolchains: widely used toolchains in EasyBuild community:

○ foss: GCC + OpenMPI + (FlexiBLAS +) OpenBLAS + FFTW

○ intel: Intel compilers + Intel MPI + Intel MKL

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

EasyBuild terminology: modules

22

● Very overloaded term: kernel modules, Python modules, Perl modules …

● In EasyBuild context: “module” usually refers to an environment module file

○ Shell-agnostic specification of how to “activate” a software installation

○ Expressed in Tcl or Lua syntax (scripting languages)

○ Consumed by a modules tool (Lmod, Environment Modules, …)

● Other types of modules will be qualified explicitly (Python modules, etc.)

● EasyBuild automatically generates a module file for each installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://lmod.readthedocs.io
https://modules.readthedocs.io
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

Bringing all EasyBuild terminology together

23

The EasyBuild framework leverages easyblocks to automatically build and install
(scientific) software, potentially including additional extensions, using a particular
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/introduction

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

24https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

● Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, …)

○ EasyBuild also works on macOS, but support is very basic

● Python 2.7 or 3.5+

○ Only Python standard library is required for core functionality of EasyBuild

○ Using Python 3 is highly recommended!

● An environment modules tool (module command)

○ Default is Lua-based Lmod implementation, highly recommended!

○ Tcl-based implementations are also supported

Installing EasyBuild: requirements

25https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Installing EasyBuild: different options

● Installing EasyBuild using a standard Python installation tool

○ pip install easybuild

○ … or a variant thereof (pip3 install --user , using virtualenv , etc.)

○ May require additional commands, for example to update environment

● Installing EasyBuild as a module, with EasyBuild (recommended!)

○ 3-step “bootstrap” procedure, via temporary EasyBuild installation using pip

● Development setup

○ Clone GitHub repositories:

easybuilders/easybuild-{framework,easyblocks,easyconfigs}

○ Update $PATH and $PYTHONPATH environment variables

26https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

3-step bootstrap procedure

● Step 1: Use pip to obtain a temporary installation of EasyBuild

export TMPDIR=/tmp/$USER/easybuild

pip3 install --prefix $TMPDIR easybuild

update environment to use this temporary EasyBuild installation

export PATH=$TMPDIR/bin:$PATH

export PYTHONPATH=$TMPDIR/lib/python3.9/site-packages:$PYTHONPATH

instruct EasyBuild to use python3 command

export EB_PYTHON=python3

27

Installing EasyBuild as a module (recommended)

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

3-step bootstrap procedure

● Step 2: Use EasyBuild to install EasyBuild (as a module) in home directory

eb --install-latest-eb-release --prefix $HOME/easybuild

and then clean up the temporary EasyBuild installation

rm -r $TMPDIR

● Step 3: Load EasyBuild module to use final installation

module use $HOME/easybuild/modules/all

module load EasyBuild

28

Installing EasyBuild as a module (recommended)

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Verifying the EasyBuild installation

● Check EasyBuild version:

eb --version

● Show help output (incl. long list of supported configuration settings)

eb --help

● Show the current (default) EasyBuild configuration:

eb --show-config

● Show system information:

eb --show-system-info

29https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

Updating EasyBuild
● Updating EasyBuild (in-place) that was installed with pip:

pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)

● Use current EasyBuild to install latest EasyBuild release as a module:

eb --install-latest-eb-release

○ This is not an in-place update, but a new EasyBuild installation!

○ You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/4.5.4

30https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installation

● EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool

● … but it will (ab)use $HOME/.local/easybuild to install software into, etc.

● It is strongly recommended to configure EasyBuild properly!

● Main questions you should ask yourself:

○ Where should EasyBuild install software (incl. module files)?

○ Where should auto-downloaded sources be stored?

○ Which filesystem is best suited for software build directories (I/O-intensive)?

Configuring EasyBuild

31https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

● Most important configuration settings: (strongly recommended to specify the ones in bold!)

○ Modules tool + syntax (modules-tool + module-syntax)

○ Software + modules installation path (installpath)*

○ Location of software sources “cache” (sourcepath)*

○ Parent directory for software build directories (buildpath)*

○ Location of easyconfig files archive (repositorypath)*

○ Search path for easyconfig files (robot-paths + robot)

○ Module naming scheme (module-naming-scheme)

● Several locations* (+ others) can be controlled at once via prefix configuration setting

● Full list of EasyBuild configuration settings (~270) is available via eb --help

Primary configuration settings

32https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Configuration levels
● There are 3 different configuration levels in EasyBuild:

○ Configuration files

○ Environment variables

○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:
○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables

33https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

● EasyBuild configuration files are in standard INI format (key=value)

● EasyBuild considers multiple locations for configuration files:

○ User-level: $HOME/.config/easybuild/config.cfg (or via $XDG_CONFIG_HOME)

○ System-level: /etc/easybuild.d/*.cfg (or via $XDG_CONFIG_DIRS)

○ See output of eb --show-default-configfiles

● Output produced by eb --confighelp is a good starting point

● Typically for “do once and forget” static configuration (like modules tool to use, ...)

● EasyBuild configuration files and easyconfig files are very different things!

EasyBuild configuration files

34https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

● Very convenient way to configure EasyBuild

● There is an $EASYBUILD_* environment variable for each configuration setting
○ Use all capital letters

○ Replace every dash (-) character with an underscore (_)

○ Prefix with EASYBUILD_

○ Example: module-syntax → $EASYBUILD_MODULE_SYNTAX

● Common approach: using a shell script or module file to (dynamically) configure EasyBuild

$EASYBUILD_* environment variables

35https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Command line options for eb command

● Configuration settings specified as command line option always “win”

● Use double-dash + name of configuration setting, like --module-syntax

● Some options have a corresponding shorthand (eb --robot == eb -r)

● In some cases, only command line option really makes sense (like eb --version)

● Typically used to control configuration settings for current EasyBuild session;

for example: eb --installpath /tmp/$USER

36https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is useful to remind you

● Shows configuration settings that are different from default

● Always shows a couple of key configuration settings

● Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config

37https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

$ cat $HOME/.config/easybuild/config.cfg
[config]

prefix=/apps

$ export EASYBUILD_BUILDPATH=/tmp/$USER/build

$ eb --installpath=/tmp/$USER --show-config
Current EasyBuild configuration

(C: command line argument, D: default value,

E: environment variable, F: configuration file)

buildpath (E) = /tmp/example/build

containerpath (F) = /apps/containers

installpath (C) = /tmp/example

packagepath (F) = /apps/packages

prefix (F) = /apps

repositorypath (F) = /apps/ebfiles_repo

robot-paths (D) = /home/example/.local/easybuild/easyconfigs

sourcepath (F) = /apps/sources

Inspecting the current configuration: example

38https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

● Use home directory as main prefix directory

(location for installed software, downloaded sources, …)

export EASYBUILD_PREFIX=$HOME/easybuild

● Use local temporary directory for build directories (important!)

export EASYBUILD_BUILDPATH=/tmp/$USER

● Ensure prepared software stack is visible via “module avail”

module use /easybuild/modules/all

39

Minimal EasyBuild configuration for hands-on

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/configuration

Basic usage of EasyBuild

● Use eb command to run EasyBuild

● Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

● --robot (-r) option is required to also install missing dependencies (and toolchain)

● Typical workflow:

○ Find or create easyconfig files to install desired software

○ Inspect easyconfigs, check missing dependencies + planned installation procedure

○ Double check current EasyBuild configuration

○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)

40https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

● There a different ways to specify to the eb command which easyconfigs to use

○ Specific relative/absolute paths to (directory with) easyconfig files

○ Names of easyconfig files (triggers EasyBuild to search for them)

○ Easystack file to specify a whole stack of software to install (via eb --easystack)

● Easyconfig filenames only matter when missing dependencies need to be installed

○ “Robot” mechanism searches based on dependency specs + easyconfig filename

● eb --search can be used to quickly search through available easyconfig files

Specifying easyconfigs to use

41https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

● To see the contents of an easyconfig file, you can use eb --show-ec

● No need to know where it is located, EasyBuild will do that for you!

$ eb --show-ec TensorFlow-2.6.0-foss-2021a.eb
easyblock = 'PythonBundle'

name = 'TensorFlow'
version = '2.6.0'

homepage = 'https://www.tensorflow.org/'
description = "An open-source software library for Machine Intelligence"

toolchain = {'name': 'foss', 'version': '2021a'}
toolchainopts = {'pic': True}
…

Inspecting easyconfigs via eb --show-ec

42https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

To check which dependencies are required, you can use eb --dry-run (or eb -D):

● Provides overview of all dependencies (both installed and missing)

● Including compiler toolchain and build dependencies

$ eb SAMtools-1.14-GCC-11.2.0.eb -D
 ...
 * [x] $CFGS/n/ncurses/ncurses-6.2-GCCcore-11.2.0.eb (module: ncurses/6.2-GCCcore-11.2.0)

 * [x] $CFGS/p/pkg-config/pkg-config-0.29.2.eb (module: pkg-config/0.29.2)

 * [x] $CFGS/o/OpenSSL/OpenSSL-1.1.eb (module: OpenSSL/1.1)

 * [x] $CFGS/c/cURL/cURL-7.78.0-GCCcore-11.2.0.eb (module: cURL/7.78.0-GCCcore-11.2.0)

 * [] $CFGS/s/SAMtools/SAMtools-1.14-GCC-11.2.0.eb (module: SAMtools/1.14-GCC-11.2.0)

Checking dependencies via eb --dry-run

43https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

To check which dependencies are still missing, use eb --missing (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb PyTables-3.6.1-foss-2021b.eb -M

3 out of 69 required modules missing:

* LZO/2.10-GCCcore-11.2.0 (LZO-2.10-GCCcore-11.2.0.eb)

* Blosc/1.21.1-GCCcore-11.2.0 (Blosc-1.21.1-GCCcore-11.2.0.eb)

* PyTables/3.6.1-foss-2021b (PyTables-3.6.1-foss-2021b.eb)

Checking missing dependencies via eb --missing

44https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

● EasyBuild can quickly unveil how exactly it would install an easyconfig file

● Via eb --extended-dry-run (or eb -x)

● Produces detailed output in a matter of seconds

● Software is not actually installed, all shell commands and file operations are skipped!

● Some guesses and assumptions are made, so it may not be 100% accurate…

● Any errors produced by the easyblock are reported as being ignored

● Very useful to evaluate changes to an easyconfig file or easyblock!

Inspecting software install procedures

45https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

$ eb Boost-1.77.0-GCC-11.2.0.eb -x
...

preparing... [DRY RUN]

[prepare_step method]
Defining build environment, based on toolchain (options) and specified dependencies...

Loading toolchain module...

module load GCC/11.2.0

Loading modules for dependencies...

module load bzip2/1.0.8-GCCcore-11.2.0
module load zlib/1.2.11-GCCcore-11.2.0
module load XZ/5.2.5-GCCcore-11.2.0

46

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

$ eb Boost-1.77.0-GCC-11.2.0.eb -x
...

Defining build environment...

 ...

 export CXX='g++'

 export CXXFLAGS='-O2 -ftree-vectorize -march=native -fno-math-errno -fPIC'

 ...

configuring... [DRY RUN]

[configure_step method]

 running command "./bootstrap.sh --with-toolset=gcc

 --prefix=/tmp/example/Boost/1.77.0-GCC-11.2.0 --without-libraries=python,mpi"

 (in /tmp/example/build/Boost/1.77.0/GCC-11.2.0/Boost-1.77.0)

47

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

$ eb Boost-1.77.0-GCC-11.2.0.eb -x
...

[sanity_check_step method]

Sanity check paths - file ['files']

 * lib/libboost_system-mt-x64.so

 * lib/libboost_system.so

 * lib/libboost_thread-mt-x64.so

Sanity check paths - (non-empty) directory ['dirs']

 * include/boost

Sanity check commands

 (none)

...

48

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/basic_usage

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

49https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

Installing software with EasyBuild

● To install software with EasyBuild, just run the eb command:

○ eb SAMtools-1.14-GCC-11.2.0.eb

● If any dependencies are still missing, you will need to also use --robot:

○ eb BCFtools-1.14-GCC-11.2.0.eb --robot

● To see more details while the installation is running, enable trace mode:

○ eb BCFtools-1.14-GCC-11.2.0.eb --robot --trace

● To reinstall software, use eb --rebuild (or eb --force)

50https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

● EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

Step-wise installation procedure

51https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

Using software installed with EasyBuild

To use the software you installed with EasyBuild, load the corresponding module:

inform modules tool about modules installed with EasyBuild

module use $HOME/easybuild/modules/all

check for available modules for BCFtools

module avail BCFtools

load BCFtools module to “activate” the installation

module load BCFtools/1.14-GCC-11.2.0

52https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

● It’s easy to “stack” software installed in different locations

● EasyBuild doesn’t care much where software is installed

● As long as the required modules are available to load, it can pick them up

● End users can easily manage a software stack on top of what’s installed centrally!

module use /easybuild/modules/all

eb --installpath $HOME/easybuild my-software.eb

Stacking software installations

53https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/installing_software

Troubleshooting failing installations

54

● Sometimes stuff still goes wrong…

● Being able to troubleshoot a failing installation is a useful/necessary skill

● Problems that occur include (but are not limited to):

○ Missing source files

○ Missing dependencies (perhaps overlooked required dependencies)

○ Failing shell commands (non-zero exit status)

○ Running out of memory or storage space

○ Compiler errors (or crashes)

● EasyBuild keeps a thorough log for each installation which is very helpful

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

● When EasyBuild detects that something went wrong, it produces an error

● Very often due to a shell command that produced a non-zero exit code...

● Sometimes the problem is clear directly from the error message:

== building...

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/example/example/1.0/GCC-11.2.0):

build failed (first 300 chars): cmd "make" exited with exit code 2 and output:

/usr/bin/g++ -O2 -ftree-vectorize -march=native -std=c++14 -c -o core.o core.cpp

g++: error: unrecognized command line option '-std=c++14' (took 1 sec)

● In some cases, the error message itself does not reveal the problem...

Troubleshooting: error messages

55https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

● EasyBuild keeps track of the installation in a detailed log file

● During the installation, it is stored in a temporary directory:
$ eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

...

● Includes executed shell commands and output, build environment, etc.

● More detailed log file when debug mode is enabled (debug configuration setting)

● There is a log file per EasyBuild session, and one per performed installation

● When an installation completes successfully,

the log file is copied to a subdirectory of the software installation directory

Troubleshooting: log files

56https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

● EasyBuild log files are well structured, and fairly easy to search through

● Example log message, showing prefix (“== ”), timestamp, source location, log level:

== 2022-05-25 13:11:19,968 run.py:222 INFO running cmd: make -j 9

● Different steps of installation procedure are clearly marked:

== 2022-05-25 13:11:48,817 example INFO Starting sanity check step

● To find actual problem for a failing shell command, look for patterns like:
○ ERROR
○ Error 1
○ error:
○ failure
○ not found
○ No such file or directory
○ Segmentation fault

Troubleshooting: navigating log files

57https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

● EasyBuild leaves the build directory in place when the installation failed

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/build/example/1.0/GCC-11.2.0): build failed ...

● Can be useful to inspect the contents of the build directory for debugging

● For example:

○ Check config.log when configure command failed

○ Check CMakeFiles/CMakeError.log when cmake command failed (good luck…)

Troubleshooting: inspecting the build directory

58https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

● Highly recommended to try the exercise on tutorial website!

● Try to fix the problems you encounter with the “broken” easyconfig file…

$ eb subread.eb

...

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/example/Subread/2.0.3/GCC-8.5.0): build failed (first 300 chars):

Couldn't find file subread-2.0.3-source.tar.gz anywhere, and downloading

it didn't work either...

Paths attempted (in order): ...

Troubleshooting: hands-on exercise

59https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/troubleshooting

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

60https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

Adding support for additional software

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense...

61https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Easyblocks vs easyconfigs
● When can you get away with using an easyconfig leveraging a generic easyblock?

● When is a software-specific easyblock really required?

● Easyblocks are “implement once and forget”

● Easyconfig files leveraging a generic easyblock can become too involved (subjective)

● Reasons to consider implementing a custom easyblock:

○ 'critical' values for easyconfig parameters required to make installation succeed

○ custom (configure) options related to toolchain or included dependencies

○ interactive commands that need to be run

○ having to create or adjust specific (configuration) files

○ 'hackish' usage of a generic easyblock

○ complex or very non-standard installation procedure

62https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Writing easyconfig files

● Collection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

● Some easyconfig parameters are mandatory, and must always be defined:

name, version , homepage , description , toolchain

● Commonly used easyconfig parameters (but strictly speaking not required):
○ easyblock (by default derived from software name)

○ versionsuffix

○ source_urls, sources, patches, checksums

○ dependencies, builddependencies

○ preconfigopts, configopts, prebuildopts, buildopts, preinstallopts, installopts

○ sanity_check_paths, sanity_check_commands

63https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Generating tweaked easyconfig files

● Trivial changes to existing easyconfig files can be done automatically

● Bumping software version: eb example-1.0.eb --try-software-version 1.1

● Changing toolchain (version): eb example.eb --try-toolchain GCC,11.2.0

● Changing specific easyconfig parameters (limited): eb --try-amend ...

● Note the “try” aspect: additional changes may be required to make installation work

● EasyBuild does save the so generated easyconfig files in the easybuild subdirectory

of the software installation directory and in the easyconfig archive.

64https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

● Small but useful feature: copy specified easyconfig file via eb --copy-ec

● Avoids the need to locate the file first via eb --search

● Typically used to create a new easyconfig using existing one as starting point

● Example:

$ eb --copy-ec SAMtools-1.14-GCC-11.2.0.eb SAMtools.eb

...

SAMtools-1.14-GCC-11.2.0.eb copied to SAMtools.eb

Copying easyconfig files

65https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

Hands-on: creating easyconfig files

66

● Step-wise example + exercise of creating an easyconfig file from scratch

● For fictitious software packages: eb-tutorial + py-eb-tutorial

● Great exercise to work through these yourself!

name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/adding_support_additional_software

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

67https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

68https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

● Handful of supported module naming schemes (MNS), EasyBuildMNS is the default

● Flat module naming scheme (like EasyBuildMNS)

○ Clear mapping of easyconfig filename to name of generated module file

○ All modules immediately available for loading

● Hierarchical scheme typically has 3 levels

○ core level for things like compilers

○ compiler level

○ MPI level

○ Use “gateway modules” to access

different levels

Flat vs hierarchical module naming schemes

69https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

Pros and cons of using a flat vs hierarchical MNS

● Flat MNS
± all modules visible (can be overwhelming)
+ guaranteed unique
− long module names that can be confusing
− potential compatibility issues unless you are careful

● Hierarchical MNS
+ short/clean module names (and no visible toolchains)
± less visible modules (need to use module spider + module avail)
± automatic swapping with Lmod when changing compiler/mpi
+ modules that can be loaded are compatible with each other
− requires gateway modules which might have little meaning for users

70https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

● You can also create your own module naming scheme (e.g., lower-case only)
○ Implement Python class that derives from the general ModuleNamingScheme class

○ Best to start from one of the existing schemes

○ There are (a lot) more things to tweak with hierarchical module naming schemes

● To configure EasyBuild to use your custom module naming scheme:

export EASYBUILD_INCLUDE_MODULE_NAMING_SCHEMES=$HOME/easybuild/example_mns.py

export EASYBUILD_MODULE_NAMING_SCHEME=ExampleMNS

● Use dry-run mode to test it, e.g.,
eb SciPy-bundle-2021.10-foss-2021b.eb -D

Custom module naming schemes with EasyBuild

71https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

https://docs.easybuild.io/en/latest/api/easybuild.tools.module_naming_scheme.mns.html#easybuild.tools.module_naming_scheme.mns.ModuleNamingScheme
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

Hands-on example: installing HDF5 in an HMNS

● We must avoid mixing modules from a flat and hierarchical MNS!
module unuse $MODULEPATH

● Configure our setup to reuse the existing software installations
export EASYBUILD_INSTALLPATH_SOFTWARE=/easybuild/software

export EASYBUILD_MODULE_NAMING_SCHEME=HierarchicalMNS

export EASYBUILD_INSTALLPATH_MODULES=$HOME/hmns/modules

● Re-generate all modules for HDF5 using the new scheme (42 modules)
eb HDF5-1.12.1-gompi-2021b.eb --robot --module-only

● Explore the new hierarchy
module use $HOME/hmns/modules/all/Core

72https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/module_naming_schemes

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

73https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

EasyBuild at Jülich Supercomputing Centre

74

by Sebastian Achilles

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Jülich Supercomputing Centre

75

● JSC is a German supercomputing centre since 1987

○ About 250 experts for all aspects of supercomputing and simulation
sciences

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Jülich Supercomputing Centre

76

● JSC is a German supercomputing centre since 1987

○ About 250 experts for all aspects of supercomputing and simulation
sciences

● Currently 3 primary systems:

○ JUWELS - 70 Petaflops, #8 in Top500 (modular supercomputing)

○ JURECA-DC - 3.54 (CPU) + 14.98 (GPU) + 5 (KNL) Petaflops

○ JUSUF - AMD, V100 GPU. Interactive workflows and community services

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

EasyBuild at JSC

77

● Used for production software stack at JSC since 2014

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

EasyBuild at JSC

78

● Used for production software stack at JSC since 2014

● Geared towards average user experience

○ Hide lots of indirect software

○ Lots of toolchains => Module hierarchy

○ Renaming some modules, Lmod tweaks

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

EasyBuild at JSC

79

● Used for production software stack at JSC since 2014

● Geared towards average user experience

○ Hide lots of indirect software

○ Lots of toolchains => Module hierarchy

○ Renaming some modules, Lmod tweaks

● Custom MNS, toolchains, easyconfigs, easyblocks

○ Maintenance and contribution issue

○ Working hard to minimise this

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Upgrading and retiring software

80

● Provide latest software to new projects by default

○ Stages concept

○ Updates once per year

○ Encourages users to adopt latest software & dependencies
(performance, bug fixes,...)

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Upgrading and retiring software

81

● Provide latest software to new projects by default

○ Stages concept

○ Updates once per year

○ Encourages users to adopt latest software & dependencies
(performance, bug fixes,...)

● Give indirect access to "retired" software

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

82

● Very powerful alternative to customisations

○ Much more automated and flexible

○ Easier to maintain (particularly for easyconfigs)

Leveraging hooks for users & maintainers

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

83

● Very powerful alternative to customisations

○ Much more automated and flexible

○ Easier to maintain (particularly for easyconfigs)

● Hooks to enable user space installations

○ Guide people on how to do this “properly”

○ Installation hierarchy: system group user

Leveraging hooks for users & maintainers

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_jsc

Integration of EasyBuild in EESSI

84

Presented by Sebastian Achilles

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_eessi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_eessi

● The challenge:

○ Same software everywhere (HPC, Cloud, servers, laptops)

○ Optimized for specific CPUs, well tested, works on different OSs

○ Plug ‘n play, limited setup

● The solution: EESSI - European Environment for Scientific Software Installations

○ “Streams” (scientific) software installations on-demand

○ Any machine, anywhere, nearly instantly available

Optimised scientific software everywhere without building
or tuning: that's EESSI!

https://www.eessi-hpc.org

https://eessi.github.io/docs

https://www.eessi-hpc.org
https://eessi.github.io/docs

Host operating system (Linux, WSL, macOS)

 T

es
tin

g

High-level overview of the EESSI project

Software layer
Optimized applications + dependencies

Filesystem layer
Distribution of the software stack

Compatibility layer
Levelling the ground across client OSs

Host OS
provides
network
& GPU
drivers,

resource
manager
(Slurm),

...

86

https://www.eessi-hpc.org

https://eessi.github.io/docs

https://www.eessi-hpc.org
https://eessi.github.io/docs

● Global distribution of software installations

● Centrally managed software stack

● Redundant network of “mirrors”

● Multiple levels of caching

● Same software stack everywhere:

laptops, HPC clusters, cloud VMs, …

HPC cluster X

Cloud A

CernVM-FS
Stratum 0

CernVM-FS
Stratum 1

EESSI access

Squid
reverse
proxy

87
Squid forward

proxy

https://cvmfs.readthedocs.io

(icons via https://www.flaticon.com/authors/smashicons)

https://cvmfs.readthedocs.io
https://www.flaticon.com/authors/smashicons

● If EESSI is already available: just set up your environment by sourcing a script

● As a system administrator, to make EESSI available:

○ Only need to install CernVM-FS + EESSI configuration package

○ Should also consider setting up squid proxy and maybe own Stratum-1 server

● As an end user on an HPC system, to access EESSI without having admin rights:

○ Run a container image via Singularity that includes CernVM-FS to access EESSI

○ See instructions at https://eessi.github.io/docs/pilot

● As a software developer in a CI environment like GitHub Actions

○ Use EESSI action in your workflow to leverage the available software in your tests

Leveraging EESSI in different scenarios

https://eessi.github.io/docs/pilot

● EESSI not ready for production yet, but testing + feedback is welcome!

● Website: https://www.eessi-hpc.org

● Documentation: https://eessi.github.io/docs

● Introduction to EESSI (EUM’21): https://www.youtube.com/watch?v=1CXwzIW_MsU

● Join the EESSI mailing list and Slack: https://www.eessi-hpc.org/join

● Monthly update meetings, open to join for anyone interested

https://github.com/EESSI/meetings/wiki

● EESSI hackathons (Dec’21 + Jan’22, plans for more):

https://github.com/EESSI/hackathons

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_eessi

https://www.eessi-hpc.org
https://eessi.github.io/docs
https://www.youtube.com/watch?v=1CXwzIW_MsU
https://www.eessi-hpc.org/join
https://github.com/EESSI/meetings/wiki
https://github.com/EESSI/hackathons
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_eessi

Integration of EasyBuild in LUMI

90

by Kurt Lust

LUMI User Support Team (LUST) & University of Antwerp

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

What is LUMI?
● LUMI is one of the EuroHPC JU pre-exascale systems
● Located in the CSC Kajaani data centre, hosted by a

consortium of 10 countries who shared the investment
with EuroHPC JU.

● HPE Cray EX system using SUSE Linux/COS and the
HPE Cray Programming Environment (PE)

● Compute resources:
○ GPU partition: 2560 nodes with 1 AMD Trento CPU and 4 AMD MI250X GPUs

■ GPU-first node, SlingShot 11 interconnect attached to the GPUs
■ Cache-coherent unified memory

○ CPU partition: 1536 nodes with 2 64-core AMD Zen3 CPUs
○ Small interactive data analysis and visualisation partition (8 CPU-only nodes and 8

nodes with NVIDIA GPU)
○ OpenShift/Kubernetes partition
○ Lustre storage + Ceph object storage

91https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Challenges

● Integrate with the HPE Cray PE, which is installed with the OS and not with the user
applications stack.

○ EasyBuild common toolchains pose problems and have little support for AMD GPUs
● Heterogeneous environment and fast evolving software

○ Software stack updates measured in updates/year rather than years/update
● Distributed support effort

○ Central LUMI User Support Team only 9 FTE, and they are employees of institutions in the
consortium countries and not of CSC

○ Consortium countries should also provide support
● Combining distributed user management with a small central support team with little

access to user data creates a software license management nightmare
● Need for customisation

92https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Building block 1: Lmod to organise software stacks

● Versatile and well supported in EasyBuild (and Spack), and by the HPE Cray PE.

● Used Lmod hierarchy to implement software stacks

○ CrayEnv: "enriched" Cray Programming Environment

■ Management of Cray PE target modules

■ Some additional tools on top of the OS

○ LUMI software stack: 2-level hierarchy
■ Versions aligned with the versions of the Cray PE (21.08, 21.12)
■ Second level: partition module loads stack for a particular architecture
■ Automatic selection of the partition module, but can be overwritten, e.g., for

cross-compiling
■ Meta-partitions for special needs, e.g., software installed once for all architectures

93https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Building block 2: EasyBuild
● EasyBuild gives a very precise description of the installation process

○ Hence a good way of passing installation instructions to someone
● Configuration of each individual installation fully described by easyconfig file, not by

command line arguments
● Configuration module integrates EasyBuild with the LUMI software stack

○ Environment variable points to the user installation
○ User installation in the module search path
○ 3 EasyBuild configuration modules configure EasyBuild to install software in the right

location:
■ EasyBuild-production, EasyBuild-infrastructure : system stack
■ EasyBuild-user for the user configuration

● Fix the version of EasyBuild for each software stack

94https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

● Common toolchains not fit for use on LUMI
○ Have support for the Cray and AMD compilers
○ Open MPI (foss) difficult to configure for LUMI, and no AMD GPU support anyway
○ Intel compilers have become a problem on AMD hardware

● Implement custom toolchains on top of Cray PE compilers

○ Build on CSCS implementation and an older implementation included in EasyBuild,
but made several refinements

○ Compilers etc. not installed through EasyBuild

○ Replace the top level Cray PE module (PrgEnv-*) with one generated and managed
through EasyBuild but otherwise use modules on the system

Custom toolchains

95https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

● Modules not installed through EasyBuild
● Lack:

○ The metadata provided in modules generated by EasyBuild through
the $EBROOT and $EBVERSION environment variables

○ A corresponding easyconfig file to tell EasyBuild about further dependencies
● Use:

dependencies = [('cray-fftw', EXTERNAL_MODULE)]
dependencies = [('cray-fftw/3.3.8.12', EXTERNAL_MODULE)]

● But metadata can be added through various mechanisms
○ Default metadata definition file included with EasyBuild (outdated)
○ Own metadata definition files
○ Discovery mechanism: EasyBuild recognises certain environment variables used by

Cray modules

External modules

96https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

Software-specific easyblocks

● Probably the major nuisance when using EasyBuild on Cray systems
○ Several easyblocks contain code that only recognises certain compiler

toolchains and abort for others
○ Some easyblocks detect dependencies through module names rather than

EBROOT/EBVERSION variables and hence may fail for external modules
● Maintenance is an issue

○ Contributing back no guarantee that the support is maintained as testing is
impossible in the EasyBuild test environment

○ But then you have to track changes yourself
● Tend to follow the CSCS approach and use generic easyblocks wherever possible,

and "fatter" easyconfig files.

97https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/integration_lumi

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

98https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

● Documentation is read all over the world

● HPC sites, consortia, and companies

● Slack: >600 members, ~110 active members

per week, 277K messages

● Regular online conf calls… and we even meet in person sometimes!

The EasyBuild community

99https://easybuilders.github.io/easybuild-tutorial/2022-isc22/community

EasyBuild User Meeting 2020 (Barcelona)

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/community

There are several ways to contribute to EasyBuild, including:

● Providing feedback (positive or negative)

● Reporting bugs

● Joining the discussions (mailing list, Slack, conf calls)

● Sharing suggestions/ideas for enhancements & additional features

● Contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

● Extending & enhancing documentation

Contributing to EasyBuild

100https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

● EasyBuild has strong integration with GitHub, which facilitates contributions

● Some additional Python packages required for this: GitPython, keyring

● Also requires some additional configuration, incl. providing a GitHub token

● Enables creating, updating, reviewing pull requests using eb command!

● Makes testing contributions very easy (~2,500 easyconfig pull requests per year!)

● Extensively documented:

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html

GitHub integration features

101https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html
https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

metadata is automatically
derived from easyconfig

saves a lot of time!

Opening a pull request in 1, 2, 3

102

+ log into GitHub to actually open the pull request (clickety, clickety...)

$ mv sklearn.eb scikit-learn-0.19.1-intel-2017b-Python-3.6.3.eb

$ mv scikit-learn*.eb easybuild/easyconfigs/s/scikit-learn

$ git checkout develop && git pull upstream develop

$ git checkout -b scikit_learn_0191_intel_2017b

$ git add easybuild/easyconfigs/s/scikit-learn

$ git commit -m "{data}[intel/2017b] scikit-learn v0.19.1"

$ git push origin scikit_learn_0191_intel_2017b

eb --new-pr sklearn.eb

one single eb command

no git commands

no GitHub interaction

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

● [14:00-14:10] Practical information w.r.t. prepared environment for hands-on

● [14:10-14:30] Introduction to EasyBuild: scope & terminology

● [14:30-14:50] Installing & configuring EasyBuild + basic usage

● [14:50-15:30] Installing software with EasyBuild + troubleshooting

● [15:30-16:00] Adding support for additional software

● [16:00-16:30] (coffee break)

● [16:30-16:50] Module naming schemes (incl. hierarchical)

● [16:50-17:30] Integration of EasyBuild in JSC, EESSI, and LUMI

● [17:30-17:45] The EasyBuild community + contributing to EasyBuild

● [17:45-18:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are CEST)

103https://easybuild.io/tutorial/isc22

https://easybuild.io/tutorial/isc22

Topics we didn’t cover...

104

https://docs.easybuild.io - https://easybuild.io/tutorial

● Implementing easyblocks

● Using easystacks to install a whole stack at once

● Using RPATH linking

● Using EasyBuild as a library

● Implementing hooks to customize EasyBuild

● Submitting installations as jobs on a cluster

● Building Docker/Singularity container images with EasyBuild (experimental)

https://docs.easybuild.io
https://easybuild.io/tutorial

● EasyBuild: GPLv2 license - Spack: MIT/Apache 2.0 license

● No stable releases yet for Spack (< 1.0), EasyBuild is stable since 2012

● Roughly on par w.r.t. amount of supported software (but differences w.r.t. which software)

● Targeted to different use cases: HPC support teams (EasyBuild) vs developers (Spack)

● Both support running on top of Python 2.7 and 3.5+

● macOS support in EasyBuild is limited (no toolchains/testing for macOS)

● Both projects are backed by an active & supportive community!

vs

105

● Some differences:

○ Spack will install some packages from a binary cache.

○ Fixed dependency/toolchain versions in EasyBuild vs flexible CLI and the

concretiser in Spack

○ EasyBuild uses modules, in Spack this is only one of the mechanisms to activate

software

● The naughty one: As Spack makes it so easy to create 100s of different configurations of a

package, it is the ideal tool to quickly fill up your file system.

● For a more detailed (but somewhat outdated) comparison, see

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

vs

106

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

● Website: https://easybuild.io

● Documentation: https://docs.easybuild.io

● Tutorials: https://easybuild.io/tutorial

● Yearly EasyBuild User Meeting: https://easybuild.io/eum

● Getting help:

○ Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

○ Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

○ Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

Questions?

107https://easybuild.io/tutorial/isc22

https://easybuild.io
https://docs.easybuild.io
https://easybuild.io/tutorial
https://easybuild.io/eum
https://lists.ugent.be/wws/subscribe/easybuild
https://easybuild.slack.com
https://easybuild.io/join-slack
https://github.com/easybuilders/easybuild/wiki/Conference-calls
https://easybuild.io/tutorial/isc21

