Testing Flask Applications¶
Something that is untested is broken.
The origin of this quote is unknown and while it is not entirely correct, it is also not far from the truth. Untested applications make it hard to improve existing code and developers of untested applications tend to become pretty paranoid. If an application has automated tests, you can safely make changes and instantly know if anything breaks.
Flask provides a way to test your application by exposing the Werkzeug
test Client
and handling the context locals for you.
You can then use that with your favourite testing solution. In this documentation
we will use the unittest
package that comes pre-installed with Python.
The Application¶
First, we need an application to test; we will use the application from the Tutorial. If you don’t have that application yet, get the sources from the examples.
The Testing Skeleton¶
In order to test the application, we add a second module
(flaskr_tests.py
) and create a unittest skeleton there:
import os
import flaskr
import unittest
import tempfile
class FlaskrTestCase(unittest.TestCase):
def setUp(self):
self.db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp()
flaskr.app.testing = True
self.app = flaskr.app.test_client()
with flaskr.app.app_context():
flaskr.init_db()
def tearDown(self):
os.close(self.db_fd)
os.unlink(flaskr.app.config['DATABASE'])
if __name__ == '__main__':
unittest.main()
The code in the setUp()
method creates a new test
client and initializes a new database. This function is called before
each individual test function is run. To delete the database after the
test, we close the file and remove it from the filesystem in the
tearDown()
method. Additionally during setup the
TESTING
config flag is activated. What it does is disable the error
catching during request handling so that you get better error reports when
performing test requests against the application.
This test client will give us a simple interface to the application. We can trigger test requests to the application, and the client will also keep track of cookies for us.
Because SQLite3 is filesystem-based we can easily use the tempfile module
to create a temporary database and initialize it. The
mkstemp()
function does two things for us: it returns a
low-level file handle and a random file name, the latter we use as
database name. We just have to keep the db_fd around so that we can use
the os.close()
function to close the file.
If we now run the test suite, we should see the following output:
$ python flaskr_tests.py
----------------------------------------------------------------------
Ran 0 tests in 0.000s
OK
Even though it did not run any actual tests, we already know that our flaskr application is syntactically valid, otherwise the import would have died with an exception.
The First Test¶
Now it’s time to start testing the functionality of the application.
Let’s check that the application shows “No entries here so far” if we
access the root of the application (/
). To do this, we add a new
test method to our class, like this:
class FlaskrTestCase(unittest.TestCase):
def setUp(self):
self.db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp()
flaskr.app.testing = True
self.app = flaskr.app.test_client()
with flaskr.app.app_context():
flaskr.init_db()
def tearDown(self):
os.close(self.db_fd)
os.unlink(flaskr.app.config['DATABASE'])
def test_empty_db(self):
rv = self.app.get('/')
assert b'No entries here so far' in rv.data
Notice that our test functions begin with the word test; this allows
unittest
to automatically identify the method as a test to run.
By using self.app.get we can send an HTTP GET
request to the application with
the given path. The return value will be a response_class
object.
We can now use the data
attribute to inspect
the return value (as string) from the application. In this case, we ensure that
'No entries here so far'
is part of the output.
Run it again and you should see one passing test:
$ python flaskr_tests.py
.
----------------------------------------------------------------------
Ran 1 test in 0.034s
OK
Logging In and Out¶
The majority of the functionality of our application is only available for the administrative user, so we need a way to log our test client in and out of the application. To do this, we fire some requests to the login and logout pages with the required form data (username and password). And because the login and logout pages redirect, we tell the client to follow_redirects.
Add the following two methods to your FlaskrTestCase class:
def login(self, username, password):
return self.app.post('/login', data=dict(
username=username,
password=password
), follow_redirects=True)
def logout(self):
return self.app.get('/logout', follow_redirects=True)
Now we can easily test that logging in and out works and that it fails with invalid credentials. Add this new test to the class:
def test_login_logout(self):
rv = self.login('admin', 'default')
assert b'You were logged in' in rv.data
rv = self.logout()
assert b'You were logged out' in rv.data
rv = self.login('adminx', 'default')
assert b'Invalid username' in rv.data
rv = self.login('admin', 'defaultx')
assert b'Invalid password' in rv.data
Test Adding Messages¶
We should also test that adding messages works. Add a new test method like this:
def test_messages(self):
self.login('admin', 'default')
rv = self.app.post('/add', data=dict(
title='<Hello>',
text='<strong>HTML</strong> allowed here'
), follow_redirects=True)
assert b'No entries here so far' not in rv.data
assert b'<Hello>' in rv.data
assert b'<strong>HTML</strong> allowed here' in rv.data
Here we check that HTML is allowed in the text but not in the title, which is the intended behavior.
Running that should now give us three passing tests:
$ python flaskr_tests.py
...
----------------------------------------------------------------------
Ran 3 tests in 0.332s
OK
For more complex tests with headers and status codes, check out the MiniTwit Example from the sources which contains a larger test suite.
Other Testing Tricks¶
Besides using the test client as shown above, there is also the
test_request_context()
method that can be used
in combination with the with
statement to activate a request context
temporarily. With this you can access the request
,
g
and session
objects like in view
functions. Here is a full example that demonstrates this approach:
import flask
app = flask.Flask(__name__)
with app.test_request_context('/?name=Peter'):
assert flask.request.path == '/'
assert flask.request.args['name'] == 'Peter'
All the other objects that are context bound can be used in the same way.
If you want to test your application with different configurations and there does not seem to be a good way to do that, consider switching to application factories (see Application Factories).
Note however that if you are using a test request context, the
before_request()
and after_request()
functions are not called automatically. However
teardown_request()
functions are indeed executed when
the test request context leaves the with
block. If you do want the
before_request()
functions to be called as well, you
need to call preprocess_request()
yourself:
app = flask.Flask(__name__)
with app.test_request_context('/?name=Peter'):
app.preprocess_request()
...
This can be necessary to open database connections or something similar depending on how your application was designed.
If you want to call the after_request()
functions you
need to call into process_response()
which however
requires that you pass it a response object:
app = flask.Flask(__name__)
with app.test_request_context('/?name=Peter'):
resp = Response('...')
resp = app.process_response(resp)
...
This in general is less useful because at that point you can directly start using the test client.
Faking Resources and Context¶
Changelog
New in version 0.10.
A very common pattern is to store user authorization information and
database connections on the application context or the flask.g
object. The general pattern for this is to put the object on there on
first usage and then to remove it on a teardown. Imagine for instance
this code to get the current user:
def get_user():
user = getattr(g, 'user', None)
if user is None:
user = fetch_current_user_from_database()
g.user = user
return user
For a test it would be nice to override this user from the outside without
having to change some code. This can be accomplished with
hooking the flask.appcontext_pushed
signal:
from contextlib import contextmanager
from flask import appcontext_pushed, g
@contextmanager
def user_set(app, user):
def handler(sender, **kwargs):
g.user = user
with appcontext_pushed.connected_to(handler, app):
yield
And then to use it:
from flask import json, jsonify
@app.route('/users/me')
def users_me():
return jsonify(username=g.user.username)
with user_set(app, my_user):
with app.test_client() as c:
resp = c.get('/users/me')
data = json.loads(resp.data)
self.assert_equal(data['username'], my_user.username)
Keeping the Context Around¶
Changelog
New in version 0.4.
Sometimes it is helpful to trigger a regular request but still keep the
context around for a little longer so that additional introspection can
happen. With Flask 0.4 this is possible by using the
test_client()
with a with
block:
app = flask.Flask(__name__)
with app.test_client() as c:
rv = c.get('/?tequila=42')
assert request.args['tequila'] == '42'
If you were to use just the test_client()
without
the with
block, the assert
would fail with an error because request
is no longer available (because you are trying to use it outside of the actual request).
Accessing and Modifying Sessions¶
Changelog
New in version 0.8.
Sometimes it can be very helpful to access or modify the sessions from the
test client. Generally there are two ways for this. If you just want to
ensure that a session has certain keys set to certain values you can just
keep the context around and access flask.session
:
with app.test_client() as c:
rv = c.get('/')
assert flask.session['foo'] == 42
This however does not make it possible to also modify the session or to access the session before a request was fired. Starting with Flask 0.8 we provide a so called “session transaction” which simulates the appropriate calls to open a session in the context of the test client and to modify it. At the end of the transaction the session is stored. This works independently of the session backend used:
with app.test_client() as c:
with c.session_transaction() as sess:
sess['a_key'] = 'a value'
# once this is reached the session was stored
Note that in this case you have to use the sess
object instead of the
flask.session
proxy. The object however itself will provide the
same interface.