{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook presents a working example of adjusting texts for multiple subplots, related to https://github.com/Phlya/adjustText/issues/58" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "from adjustText import adjust_text\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# With multiple subplots, run `adjust_text` for one subplot at a time" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAESCAYAAADJ4dwlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo6klEQVR4nO3deVxTV94/8E9IgICSiCsgSAT3OnXBxwVFp61KrUWtXRi3al3q0hnFTqelQwsiLoNjFem4diw8VVF+Cjo+rYMwjhRcaq2F1koHLdUWNdZqK2ipIMn390cmVwIBkpD18n2/XveFubm5OedCPp6be+45EiIiMMYYY4wx5gBuji4AY4wxxhhrvbgxyhhjjDHGHIYbo4wxxhhjzGG4McoYY4wxxhyGG6OMMcYYY8xhuDHKGGOMMcYchhujjDHGGGPMYWSOLoAptFotrl+/Dh8fH0gkEkcXhzEmQkSEu3fvIiAgAG5u4jtP5xxljNmapTnqEo3R69evIygoyNHFYIy1AuXl5QgMDHR0MayOc5QxZi/m5qhLNEZ9fHwA6CqnUCgcXBrGmBhVVlYiKChIyBux4RxljNmapTnqEo1R/SUlhULBIcoYsymxXsLmHGWM2Yu5OSq+jlGMMcYYY8xlmN0YLSgoQFRUFAICAiCRSHDo0KFmX/Pxxx8jLCwMcrkcISEh2LZtmyVlZYwxxhhjImN2Y/SXX37BgAED8Le//c2k7S9fvoynnnoKERERKCoqwp///GcsXboUWVlZZheWMcYYY4yJi9l9RidMmIAJEyaYvP22bdvQrVs3pKSkAAD69u2Lzz77DOvXr8ezzz5r7tuzVkyjAQoLAbUa8PcHIiIAqdTRpWKMMdfBOcqckc1vYDp9+jTGjx9vsC4yMhI7d+7EgwcP4O7u3uA11dXVqK6uFh5XVlbaupjMyWVnA8uWAVevPlwXGAhs2gRMneq4cjHmrDhHWX2co8xZ2fwGphs3bqBLly4G67p06YLa2lrcunXL6GvWrl0LpVIpLDw2XuuWnQ0895xhgALAtWu69dnZjikXY86Mc5TVxTnKnJld7qavf4s/ERldr/fmm2+ioqJCWMrLy21eRuacNBrdmfx//2QM6NfFxOi2Y4w9xDnK9DhHmbOz+WV6Pz8/3Lhxw2DdzZs3IZPJ0KFDB6Ov8fT0hKenp62LxlxAYWHDM/m6iIDyct12v/2t3YrFmNPjHGV6nKPM2dn8m9ERI0YgLy/PYF1ubi6GDBlitL8oY3Wp1dbdjjHGWhvOUebszG6M3rt3D8XFxSguLgagG7qpuLgY33//PQDdpaEXX3xR2H7RokX47rvv8Oqrr+Lrr7/G+++/j507d+K1116zTg2YqPn7W3c7xhhrbThHmbMzuzH62WefYdCgQRg0aBAA4NVXX8WgQYMQHx8PAFCr1ULDFAC6d++OI0eOID8/HwMHDkRSUhJSU1N5WCcHk0gkTS5z5sxp8f7rT4iQnZ2NcePGoVOnTlAoFBgxYgSOHj1qsM17772HiIgI+Pr6wtfXF0lJY9G586dobGYxiQQICtINT8IYY/bmCln6zDO+8PQcC+DTRt6Dc5Q5ltl9Rn/7298KNyAZk56e3mDdmDFj8Pnnn5v7VsyG1HWux2RmZiI+Ph6lpaXCOi8vL6u/Z0FBAcaNG4c1a9agXbt2SEtLQ1RUFM6cOSOc3OTn52PatGkIDw+HXC7HunXr8Mkn40F0ARJJV4MO+PoGakoKj5PHGHMMV8nSV15Zh3//ezyACwC6CvviHGVOgVxARUUFAaCKigpHF0WU0tLSSKlUGqw7fPgwDR48mDw9Pal79+60YsUKevDgARERJSYmkr+/P926dUvYPioqiiIiIkij0VBwcDABEJbg4OBG37tfv36UmJjY6PO1tbXk4+NDf/jD/1JgIJGuq71uCQoiyspqUdWZCNTWEh0/TpSRoftZW2vZfsSeM2KvnzNw9iz18vIhX9//5RxlDTg6R21+Nz1zPUePHsXMmTORmpqKiIgIlJWV4eWXXwYAJCQkIC4uDjk5OZg/fz4OHjyIbdu2oaCgAF988QXc3Nxw9uxZdO7cGWlpaXjyySchbeR0W6vV4u7du2jfvn2jZamqqsKDBw8wfnx7bNzIM4cwQzyIN3NmzpalRA+QltYeSiXnKHvIKXLUsravffEZvW3VP5uPiIigNWvWGGyza9cu8vf3Fx6XlZWRj48PvfHGG+Tt7U27d+822B4AHTx4sMn3XbduHbVv355++OGHRrdZsmQJhYaG0q+//mp6hVirkJVFJJEYflsO6NZJJOZ/2yP2nBF7/ZwBZylzNc6So9wYZQ0C1Nvbm+RyObVp00ZY5HI5AaBffvlF2G779u0EgKKjoxvss7kAzcjIIG9vb8rLy2t0m+TkZPL19aUvvvjConox8aqtpQbdNuoHaVCQeZeaxJ4zYq+fM+AsZa7EmXKUL9OzBrRaLRITEzHVyPfzcrlc+HdBQQGkUimuXLmC2tpayGSm/TllZmZi3rx52L9/P8aOHWt0m/Xr12PNmjX417/+hUcffdSyijDR4kG8mSvgLGXOzJly1C7TgTLXMnjwYJSWlqJHjx4NFjc33Z9MZmYmsrOzkZ+fj/LyciQlJRnsw93dHRojc8vt3bsXc+bMQUZGBiZOnGj0/f/6178iKSkJOTk5GDJkiPUryFweD+LNXAFnKXNmzpSj/M0oayA+Ph5PP/00goKC8Pzzz8PNzQ1ffvklzp8/j1WrVuHq1atYvHgxkpOTMWrUKKSnp2PixImYMGEChg8fDgBQqVQ4duwYRo4cCU9PT/j6+mLv3r148cUXsWnTJgwfPlyYJtbLywtKpRIAsG7dOrz99tvIyMiASqUStmnbti3atm3rmAPCnA4P4s1cAWcpc2ZOlaNmdjFwCO7rZFvGhiPJycmh8PBw8vLyIoVCQUOHDqUdO3aQVqulJ554giIjI0mr1QrbL1++nEJDQ+nu3btEpBvOpEePHiSTyYThSMaMGWMwTIl+mT17trCf+kOZ6JeEhAQbHwXmSvR9nYx1vOc+o8aJvX7OgLOUuRJnylEJURMj2DuJyspKKJVKVFRUQKFQOLo4jLV6ksamxPqv2bNnG50Aw5z9Hzx4EFOmTDFYv2fPHqxbtw6XLl2Cp6cSd+48CWA9gA51Xqv7eeCAecOSiD1nxF4/xlwN5+hD3GeUMWY2tVotLCkpKVAoFAbrNm3aZPX3PHHiBF588UXMmzcPFy5cwP/9334EBZ2FXD7fYLvAQPMDlDHG7I1z9CFujDLGzObn5ycsSqUSEonEYF1BQQHCwsIgl8sREhKCxMRE1NbWAgBWrlyJgIAA3L59W9jfpEmTMHr0aGi1WqhUKgDAM888A4lEIjz+5JNPoFKpsHTpUnTv3h2jRo3Cn/60EB07fobjx4GMDOD4ceDyZW6IMsacH+doHWZd1HcQ7uvEmPOq308uJyeHFAoFpaenU1lZGeXm5pJKpaIVK1YQkW5awhEjRtCUKVOIiGjr1q2kVCrpypUrRER08+ZNAkBpaWmkVqvp5s2bRER08uRJ8vDwoI8++oi0Wi3duHGDRo8eTQsXLrRKPcSeM2KvH2OurLXnKDdGGWMtYs9ZZ/bv309t27YlmUxGAGjSpElUU1NjlXqIPWfEXj/GXFlrz1G+TM8Ys6pz585h5cqVwhAybdu2xYIFC6BWq1FVVQUACAkJwfr165GcnIyoqCjMmDGj2f2WlJRg6dKliI+Px7lz55CTk4PLly9j0aJFtq4SY4zZVWvLUR5nlDFmVbaadWbt2rUYOXIk/vSnPwEAHn30UbRp0wYRERFYtWoV/HlQUcaYSLS2HOVvRhljVmWrWWeqqqqE1+tJpVIAADn/CHWMMWay1paj/M0oY8yqbDXrTFRUFBYsWICtW7ciMjISarUaMTExGDp0KAICAhxca8YYs55Wl6NW6bFqY9zxnjHnZa9ZZ4iIUlNTqV+/fuTl5UX+/v40Y8YMunr1qlXqIfacEXv9GHNlrT1HeQYmxhiD+HNG7PVjjDkez8DEGGOMMcZcDjdGGWOMMcaYw3BjlDHGGGOMOQw3RhljjDHGmMNwY5QxxhhjjDkMN0YZY4wxxpjDcGOUMcYYY4w5DDdGGWOMMcaYw3BjlDHGGGOMOQw3RhljjDHGmMNwY5QxFyGRSJpc5syZ0+L9Hzp0yGCdWq3G9OnT0bt3b7i5uSEmJqZF78EYY47EOeqcZI4uAGPMNGq1Wvh3ZmYm4uPjUVpaKqzz8vKy+ntWV1ejU6dOiIuLw8aNG62+f8YYsyfOUefE34wy5iL8/PyERalUQiKRGKwrKChAWFgY5HI5QkJCkJiYiNraWgDAypUrERAQgNu3bwv7mzRpEkaPHg2tVguVSgUAeOaZZyCRSITHKpUKmzZtwosvvgilUmnvKjPGmFVxjjonbowyJgJHjx7FzJkzsXTpUpSUlGD79u1IT0/H6tWrAQBxcXFQqVSYP38+AGDbtm0oKCjArl274ObmhrNnzwIA0tLSoFarhceMMdZacI46jkWN0S1btqB79+6Qy+UICwtDYWFhk9vv2bMHAwYMgLe3N/z9/fHSSy8ZnFkwxlpm9erViI2NxezZsxESEoJx48YhKSkJ27dvBwBIpVLs3r0bx44dQ2xsLP74xz9i8+bNCA4OBgB06tQJANCuXTv4+fkJjxljrLXgHHUcsxujmZmZiImJQVxcHIqKihAREYEJEybg+++/N7r9iRMn8OKLL2LevHm4cOEC9u/fj7NnzwpnFoyxljt37hxWrlyJtm3bCsuCBQugVqtRVVUFAAgJCcH69euRnJyMqKgozJgxw8GlZowx58E56jhmN0Y3bNiAefPmYf78+ejbty9SUlIQFBSErVu3Gt3+k08+gUqlwtKlS9G9e3eMGjUKCxcuxGeffWZ2YfX9O5zpDrj09HSj5bl//36LysOYObRaLRITE1FcXCws58+fx6VLlyCXy4XtCgoKIJVKceXKFaEfFGtdOEcZM45z1HHMaozW1NTg3LlzGD9+vMH68ePH49SpU0ZfEx4ejqtXr+LIkSMgIvzwww84cOAAJk6c2Oj7VFdXo7Ky0mABgIsXL0KtViMlJQUKhQJqtVpYNm3aZE5VTFL3DrgBAwY0ul39sqjVaoM/XMZsbfDgwSgtLUWPHj0aLG5uuo95ZmYmsrOzkZ+fj/LyciQlJRnsw93dHRqNxhHFZzbAOcqYeThHHcesxuitW7eg0WjQpUsXg/VdunTBjRs3jL4mPDwce/bsQXR0NDw8PODn54d27drh3XffbfR91q5dC6VSKSxBQUHC+zjjHXD1y+Ln59fssWSsJbRaoLYW2LsXyM8H4uLi8cEHH2DFihW4cOECvv76a2RmZuKtt94CAFy9ehWLFy9GcnIyRo0ahfT0dKxduxaffPKJsE+VSoVjx47hxo0b+Pnnn4X1+m8I7t27hx9//BHFxcUoKSmxd5WZmThHGTNNfr4uSydP5hx1GDLDtWvXCACdOnXKYP2qVauod+/eRl9z4cIF8vf3p3Xr1tEXX3xBOTk59Jvf/Ibmzp3b6Pvcv3+fKioqhKW8vJwAUEVFBRERpaWlkVKpFLbPyckhhUJB6enpVFZWRrm5uaRSqWjFihVERFRbW0sjRoygKVOmEBHR1q1bSalU0pUrV4iI6ObNmwSA0tLSSK1W082bNxuUacyYMbRs2bIG69PS0kgqlVK3bt2oa9euNHHiRPr8888bP4iMtVBWFpGvbxoBSgKIAKLAQKK33sqh8PBw8vLyIoVCQUOHDqUdO3aQVqulJ554giIjI0mr1Qr7Wb58OYWGhtLdu3eJiOjw4cPUo0cPkslkFBwcLGwHoMFS93mxqKioMMgZV8c5yljTXnkljSSShzkKEHXsmEO9e3OOWsrSHDWrMVpdXU1SqZSys7MN1i9dupRGjx5t9DUzZ86k5557zmBdYWEhAaDr16+b9L71K1c/RCMiImjNmjUGr9m1axf5+/sLj8vKysjHx4feeOMN8vb2pt27dxtsD4AOHjzYaBkaC9HTp0/Trl27qLi4mAoKCujZZ58lLy8vunjxokl1Y8wcWVlEEgkZhCegWyeR6J5nlhFbY7Q+zlHGHuIstQ1Lc9SsGZg8PDwQFhaGvLw8PPPMM8L6vLw8TJ482ehrqqqqIJMZvo1UKtV/K2vO2zfq3LlzOHv2rDAWGABoNBrcv38fVVVV8Pb2Fu6AW7hwIaKjo612B9zw4cMxfPhw4fHIkSMxePBgvPvuu0hNTbXKezAGABoNsGyZLjLrIwIkEiAmBpg8GfjvR4wxk3GOstaCs9T5mD0d6KuvvopZs2ZhyJAhGDFiBHbs2IHvv/8eixYtAgC8+eabuHbtGj744AMAQFRUFBYsWICtW7ciMjISarUaMTExGDp0KAICAqxSCf0dcFOnTm3wXFN3wNVvJFuDm5sb/ud//geXLl2y+r5Z61ZYCFy92vjzREB5uW673/7WbsViIsE5yloLzlLnY3aKREdH4/bt21i5ciXUajX69++PI0eOCIO+qtVqgzFH58yZg7t37+Jvf/sb/vjHP6Jdu3Z4/PHHkZycbLVK1L0DrjF174CLjo5GUlISEhMTheetdQccEaG4uBi/+c1vWrwvxuqqM6WyVbZjrC7OUdZacJY6H4tOaZcsWYIlS5YYfS49Pb3Buj/84Q/4wx/+YMlbmSQ+Ph5PP/00goKC8Pzzz8PNzQ1ffvklzp8/j1WrVhm9A27ixImYMGGCcGlIfwfcyJEj4enpCV9fXwC6O+AAGNwB5+HhgX79+gEAEhMTMXz4cPTs2ROVlZVITU1FcXExNm/ebLP6stbJ39+62zFWF+coay04S52QLTqwWltzHe+JdHeCOuJO4piYGOrWrRt5eHhQp06daPz48Q1GG2DMGmprdXfNG+t0r+94HxSk246Zr7XfwETEOcpaB85S27E0RyVEVrqLyIYqKyuhVCpRUVEBhULh6OIw5jDZ2cBzz+n+XfeTK5Hofh44ABjp8sdMIPacEXv9GDMHZ6ltWJozZk8HypilGpuC0NFTEb733nuIiIiAr68vfH19MXbsWHz66actKoutTJ2qC8muXQ3XBwZyeDLWGnCOWgdnqXPhxqiIOCKkAGDz5s3o27cvvLy80Lt3b2EkhfrqTvPnTFMR5ufnY9q0aTh+/DhOnz6Nbt26Yfz48bh27ZrVy2MNU6cCV64Ax48DGRm6n5cvc3gyZg2cow2JMUcBzlKnYpNOA1Ym9r5c1qJWq4UlJSWFFAqFwbo7d+60aP8wMqD1li1byMfHh/bt20dlZWW0d+9eatu2LR0+fLjJfRnrr3b48GEaPHgweXp6Uvfu3WnFihX04MEDIiJKTEwkf39/unXrlrB9VFQURUREkEajoeDg4GZntmhswO36amtrycfHh/73f/+32W2ZeIg9Z8ReP2vhHOUcZZazywxMjsIhaj57hdSIESPotddeM3ifZcuW0ciRI80qnyOnIqyvsrKS5HI5/d///V+z2zLxEHvOiL1+tsA5yjnKzMONUWbAXiE1ePBgeuuttwzeOzY2ltzd3ammpsbk8jlyKsL6lixZQqGhofTrr782uy0TD7HnjNjrZwucow1xjrKmcGOUGbBXSL355pvk5+dHn332GWm1Wjp79ix17tyZAND169dNLp+3tzfJ5XJq06aNsMjlcgJAv/zyi7Dd9u3bCQBFR0c32Kc1QjQ5OZl8fX3piy++aHI7Jj5izxmx188WOEcb4hxlTbE0Z1zqBialUul0dxDWtW/fPkgkEkyZMqVFZbGFc+fOYeXKlWjbtq2wLFiwAGq1GlVVVQAgzDudnJyMqKgok+adfvvtt4VBr93d3TF58mThdyE1Y1Jf/VSExcXFwnL+/HlcunSpyakIrWn9+vVYs2YNcnNz8eijj1p134w5C85Ry3GONo9zlFnCpRqjFy9edLo7CPW+++47vPbaa4iIiLB6OazBViHl5eWF999/H1VVVbhy5Qq+//57qFQq+Pj4oGPHjiaXr+5UhPUXNzfdn2ndqQjLy8uRlJRksI+WTEX417/+FUlJScjJycGQIUMs2gdjroBz1HKco03jHGUWs9E3tVZlyswhjryDsLa2lkaOHEl///vfafbs2TR58mRrVLtF6h+j8PBwmjt3bpOv2bdvH3l5eVFhYSEFBARQfHy8wfPu7u504MCBZt979OjRNG3aNLPKl5OTQzKZjBISEuirr76ikpIS2rdvH8XFxRERUXl5Ofn6+lJqaioREeXm5pK7uzudPn1a2EfPnj1p8eLFpFar6aeffhLWFxUVUVFREYWFhdH06dOpqKiILly4IDyfnJxMHh4edODAgXp3zd6l48eJMjKIjh/n2TjETuyXsTlHzcc5yjnKzNOq+ow62x2E8fHxwr6dNURtFVKlpaW0a9cuunjxIp05c4aio6Opffv2dPnyZbPKpy+jI6YirP+fqH7x8UkwmCIuMJAoK8vEXwBzOa29Mco52hDnaLCwHecoM0Wrbow68g7CEydOUNeuXenHH38kIucNUSLbhFRJSQkNHDhQ2OfkyZPpP//5j72qaRNZWcbnLJZIdAsHqTi19sYo52hDnKOW4xxtnVp1Y9RRdxBWVlaSSqWiI0eOCOucJUQdrbaWXPLSTG2t7sy9foDWDdKgINepDzNda2+Mco46H85R5moszVGZdXugOoa+U/lUI3N4NdWpXCZrWfXLyspw5coVREVFGZQFAGQyGUpLSxEaGtqi93BF2dnAsmXA1asP1wUGAps2Of80a4WFhuWujwgoL9dt99vf2q1YjNkc56hz4RxlrYkoGqN17yBsTN07CKOjo5GUlITExETheUvuIOzTpw/Onz9vsO6tt97C3bt3sWnTJgQFBZlXERHIzgaee04XNnVdu6Zbf+CAcwepWm3d7RhzFZyjzoNzlLU2omiMxsfH4+mnn0ZQUBCef/55uLm54csvv8T58+exatUqXL16FYsXL0ZycjJGjRqF9PR0TJw4URjXDQBUKhU++OAYbt4cicBATzz1lC8AIC2tGD/+CKjV9xAQ8COKi4vh4eGBfv36QS6Xo3///gZladeuHQA0WN8aaDS6M/n6AQro1kkkQEwMMHkyYMbQeXbl72/d7RhzFZyjzoFzlLVKNuo2YFWmDEnSkk7lWVlEHTocJqAHATICgqlDB6IOHZq/g7C+1tzX6fjxxvsI1V2OH3d0SRun7+tkrOM993USt9beZ5SIc9QZcI4yV2ZpjkqIjJ1/OZfKykoolUpUVFRAoVBYdd+NXQ4xRiLR/XT2SySOsncvMH1689tlZADTptm+PJbS/00Ahn8X/PsXN1vmjDPgHHUNnKPMlVmaMy41A5O1NXU5xBj9djExutc2t+/8fF2w5Oc3v70YiOXSzNSpuqDs2tVwfWBg8wHa2DSLtpxuMT8/3+h7/ec//2l2X/Yu65w5c4y+1yOPPNKi92KOwzlqXZyjrpWjjiqv2LJUFH1GLdXcHX/GmHIXoCvfBdkSERG6el67Zvw/JolE97yTzvRnYOpUXZ+swkJdJ3t/f125m+ujpa7TIz8zMxPx8fEoLS0V1nl5edmqyCgtLTU4E+3UqVOT2zuirJs2bcJf/vIX4XFtbS0GDBiA559/3urvxeyDc9S6OEddK0cBzlKrsEmnASuzVV+ujAzT+uYYWzIyjO/TFQf6hZH+XHWX2bNnm7wvff0NjwEIONig/vfv36c///nP1K1bN/Lw8KCQkBDauXOn9SvoIPaabvH48eMEgH7++WenL2t9Bw8eJIlEIszi40itrc+otXCO6nCO2oYr5ag9y1ufs2Rpqxr03lpM7ShuaudxVx3ot+48wikpKaRQKOrNLXzHrP1lZdU/DqAOHQ42+A9k0qRJNGzYMMrLy6PLly/TmTNn6OTJk1asmWPZa7pFfYiqVCry8/Ojxx9/nP797387ZVnre/rpp2ncuHFmldVWuDFqGc5RHc5R23ClHLVneetzlizlxqgFmrvjz9wgFMNdkNY6qxs1KoKOHdNQx47Gz+r++c9/klKppNu3b9uranZnr+kW//Of/9COHTvo3LlzdOrUKVq8eDFJJBL6+OOPna6sdV2/fp2kUillZmaaXE5b4saoZThHG+IctR5XylF7lrcuZ8pSboxayPjlkMYDtKlLRKZermrs0pQzsNdZ3eLFi+mJJ56gN954gwICAqhnz570xz/+kaqqquxbYRtyxHSLek8//TRFRUU5dVnXrFlDHTp0oOrqapPLaUvcGLUc56ghzlHrcaUcdVR5nSlLW/V0oC2hv+Ovfkf5Dh10P2/ffrguMBBISWm887xY7oKsa/Xq1YiNjcXs2bMBACEhIUhKSsLrr7+OhIQESKVS7N69GwMHDkRsbCzeffdd7NixA8HBwQAedv5u164d/Pz8hP1+++23OHHiBORyOQ4ePIhbt25hyZIl+Omnn/D+++/bv6J2YM/pFocPH47du3c7bVmJCO+//z5mzZoFDw8Pi8vJnAPnaNM4R63HlXLUHuUVTZbapGlsZfb4xqK2VnfZJyND97O21vi65vbh6gP92uusbty4cSSXyw36UWVlZZFEIhHNWX39YxkeHk5z585t8jX79u0jLy8vKiwspICAAIqPjzd43t3dnQ4cONDsez/77LP02GOPOW1Z9f2zzp8/b3IZbY2/GW05zlEdzlHrcaUcdUR5nS1L+ZvRFpJKjQ8x0tiwI43tY9Mm3UC/EokuOvX0A/2mpDjvFG7G2Oqszt/fH127doVSqRTW9e3bF0SEq1evomfPntarhJPQT7eo0QThkUeeR+fObvDw+BIXLpg33eKxY8cwcuRIeHp6wtfXFykpKVCpVHjkkUdQU1OD3bt3IysrC1lZWS0ua0unhqxfVr2//30n+vYdhvPn++PWLdOGe2HOj3PUOM5R63GlHK1bXltkqUYDrFmzEz16DMOtW/2h0bjW58KATZrGVuZq31g0vAtSdybvjMOR1Gevs7rt27eTl5cX3b17V1h36NAhcnNzo5ycKpO/RXFm9Y9lVhZRx445BIQT4EWAgtzdh9KiRaZNt0ikuwmiR48eJJPJhJsYkpOTKTQ0lORyOfn6+tKoUaPoo48+alFZiVo2NWRjZSUi+uCDOySReBGwQ/h8BAY6/vPhajljLlerH+co5yiRa+WosfIS2SZLs7KIAgLu/PcY7HD5HOXGqI2Ye2nKWRjreC+TySghIYG++uorKikpoX379lFcXBwREZWXl5Ovry+lpqYSEVFubi65u7vT6dOnhX307NmTFi9eTGq1mn766SciIrp79y4FBgbSc889RxcuXKCPP/6Y/P17Ups28w3+83GGD5c1uOK4ibbgzMfBFXPGHK5YP85RztG6nDk/7MmZjwM3RplV2PMbsq+//prGjh1LXl5e1KFDIAGvElDldB+ulnLVcROtzdmPg9hzRuz1cyaco9bn7PlhL85+HCzNGQlR3R45zqmyshJKpRIVFRUG03QxcdBoAJWq8SkF9dPfXb7smv1h8vOBxx5rfrvjx83rW+dqnP04iD1nxF6/1o5zVIdzVMfVctTNkjfbsmULunfvDrlcjrCwMBQWFja5fXV1NeLi4hAcHAxPT0+EhoY63bATEomkyWXOnDkt3v+hQ4cM1mVnZ2PcuHHo1KkTFAoFRowYgaNHjzZ47Z07d/DKK6/A398fcrkcffv2xZEjR1pUHmfS3NzWRA/nsXZFdaYttsp2roqPg/hxjjoO56h527kqsR4Hs++mz8zMRExMDLZs2YKRI0di+/btmDBhAkpKStCtWzejr3nhhRfwww8/YOfOnejRowdu3ryJ2traFhfemtR1fnOZmZmIj49HaWmpsM7Ly8vq71lQUIBx48ZhzZo1aNeuHdLS0hAVFYUzZ85g0KBBAICamhqMGzcOnTt3xoEDBxAYGIjy8nL4+PhYvTyOItYPl54Yx020BB8H8eMcdRzOUfO2c1WiPQ7m9gcYOnQoLVq0yGBdnz59KDY21uj21piuzN59naw1lVtERARpNBoKDjY+lZsx/fr1o8TEROHx1q1bKSQkhGpqaqxaR2cihun/miKGcROtwdmPg9j7VHKOco5yjro+Zz8OluaMWZfpa2pqcO7cOYwfP95g/fjx43Hq1Cmjrzl8+DCGDBmCdevWoWvXrujVqxdee+01/Prrr42+T3V1NSorKw0WRzp69ChmzpyJpUuXoqSkBNu3b0d6ejpWr14NAIiLi4NKpcL8+fMBANu2bUNBQQF27doFNzc3nD17FgCQlpYGtVotPK5Pq9Xi7t27aN++vbDu8OHDGDFiBF555RV06dIF/fv3x5o1a6DRaGxca/uJiND1ZdKPIVifRAIEBem2c0X6cROBhnV01XETLcHHwb44RzlH6+IcFQfRHgdzWq7Xrl0jAHTy5EmD9atXr6ZevXoZfU1kZCR5enrSxIkT6cyZM/TRRx9RcHAwvfTSS42+T0JCgsEZsH5x1Bl9REQErVmzxmCbXbt2kb+/v/C4rKyMfHx86I033iBvb2/avXu3wfZA83Phrlu3jtq3b08//PCDsK53797k6elJc+fOpc8++4z27t1L7du3NzjrF4PG5rYWw12geq48bqI1OetxENs3o5yjnKOco+LlrMfBLkM76Rujp06dMli/atUq6t27t9HXWDJd2f3796miokJYysvLHRqitprKra6MjAzy9vamvLw8g/U9e/akoKAgqq3znfs777xDfn5+llfQSTnrh8uaXHXcRGuz5XGwdN9ia4xyjj7EOco5KkZiylGzbmDq2LEjpFIpbty4YbD+5s2b6NKli9HXWDJdmaenJzw9Pc0pmk3Zaio3vczMTMybNw/79+/H2LFjDZ7z9/eHu7s7pHW+c+/bty9u3LiBmpoaeHh4WFgr5zN1KjB5su5uT7Va1wHbHtNEajT2e8/GpktsbWx1HLKzgWXLDO8qDgzUXdYy8vEVNc7RhzhHOUfFSEw5alafUQ8PD4SFhSEvL89gfV5eHsLDw42+ZuTIkbh+/Tru3bsnrLt48SLc3NwQGBhoQZHtb/DgwSgtLUWPHj0aLG5uukOYmZmJ7Oxs5Ofno7y8HElJSQb7cHd3N9o/ae/evZgzZw4yMjIwceLEBs+PHDkS33zzDbRarbDu4sWL8Pf3F1WA6uk/XNOm6X7aOkCzs3Vj8z32GDB9uu6nSqVbz1xLdrZuPvP6w9tcu6Zbz79Tx+IctR/OUWYph+WouV/d7tu3j9zd3Wnnzp1UUlJCMTEx1KZNG7py5QoREcXGxtKsWbOE7Y1NV9azZ0+aP3++ye/p6LtAbTWVW0ZGBslkMtq8eTOp1Wphqdul4fvvv6e2bdvS73//eyotLaUPP/yQOnfuTKtWrbLDkRA3Z55SjZnHGrOSiO0yfX2co5yjtsA5Kh6OzFGLpgPdvHkzBQcHk4eHBw0ePJg+/vhj4bnZs2fTmDFjDLavO11ZYGAgvfrqq432FzXG0SFKZJup3MaMGWP0BoPZs2cbvPepU6do2LBh5OnpSSEhIbR69WqDvk+sacaOseEyu0XDY8BIP7bCwkIKDw+n9u3bk1wup969e9OGDRtsU0FmlWFtuDFqXZyj4sI5Kn6OzFGLGqP2Jvb/JJht1f22JCUlhRQKBWVlqQnQL3cs+tDpGQvRzz//nDIyMuirr76iy5cv065du8jb25u2b99ukzraQ3P/GdX/z9+S/dc/jllZWTR27Fjq2LEj+fj40PDhwyknJ6fBa2NiDhDQlwCP//7MNvr7zMho/P3FnjNirx+zLc5R6+AcNc6i6UAZcyV+fn7ColQqIZFIUF3tB0C/FAAIAyAHEAIgEYBuhrDNm1ciICAAt2/fFvY3adIkjB49GlqtFiqVCgDwzDPPQCKRCI8HDRqEadOm4ZFHHoFKpcLMmTMRGRnZ7NS5zkytVgtLSkoKFAqFwbpN+sHvrEg/u86RI0dw7tw5PPbYY4iKikJRUZGwzenTp5GaGg1gFoAv/vvzBQBnGuzP5WYlYcxJcI5aB+doI8xqujoIn9Eza9FfOnx4OSKHAAUB6QSUEZBLgIqAFQQQ/etftTRixAiaMmUKEelmclEqlUIf6Zs3bxIASktLI7VaTTdv3jT6vp9//jl16dKF3nvvPXtV1aacaXadF154gSIjn6w3K0kkAb8z63Kh2HNG7PVj9sM5ah2cow9xY5S1KvoP/8OO2hEErKl3GWIXAf7Ch64lA3F37dqVPDw8yM3NjVauXGmHGtqHsZtTFAoFpaenU1lZGeXm5pJKpaIVK1YQEVFtrXX+M9JoNBQUFETvvvuusC4oKIg2bNhQb8DvDQR0EwLUlBspxJ4zYq8fsx/OUevgHH2IG6OsVan74c/KIgK8CZAT0KbOohuIOyOj5QNxf/vtt/Tll1/Sjh07qH379pTRVGcbF+JMs+u4u7vTnj17iKjugN97/tvvyfQBv8WeM2KvH7MfzlHr4BytU26ztnYQDlFmLfU//B4eclIqkwm4JCx+fpfob3+7RBqNRthuxowZJJVKadiwYcIlEz1TPvxERElJSY1Om+tqnGl2HXd3d4P/nGprif78593k7u7Zqmdgqk/s9WP2wzlqHZyjD5k1AxNjYjNkyGD07l2KF1/s0ejMIXUH4o6OjkZSUhISExOF5xsbiLs+IkJ1dbUtquFwjpxdx8/Pz2BWOKkU6NjxJvz9u/AsLYzZAeeodbTmHOW76VmrFh8fj127PkB+/go8+ugFdOnyNQ4cyMRbb70FALh69SoWL16M5ORkjBo1Cunp6Vi7di0++eQTYR8qlQrHjh3DjRs38PPPPwMANm/ejP/7v//DpUuXcOnSJaSlpWH9+vWYOXOmQ+ppa46cXWfEiBENZoXLzc1tdFY4xph1cY5aR6vOUbO+R3UQvrzErMVeA3GnpqbSI488Qt7e3qRQKGjQoEG0ZcsWg0tWrsyZZtc5efIkSaVS+stf/kJff/01/eUvfyGZTEaffPKJWXUSe86IvX7MfjhHrYNz9CFujDLGzOZss+vs37+fevfuTe7u7tSnTx/KsmAOQrHnjNjrx5ir4Rx9SEJEZJ/vYC1XWVkJpVKJiooKKBQKRxeHMSZCYs8ZsdePMeZ4luYM9xlljDHGGGMOw41RxhhjjDHmMNwYZYwxxhhjDsONUcYYY4wx5jDcGGWMMcYYYw7DjVFmEYlE0uQyZ86cFu//0KFDBuuys7Mxbtw4dOrUCQqFAiNGjMDRo0cbvDYlJQW9e/eGl5cXgoKCsHz5cty/f79F5WmurM56LFyhnBcuXMCzzz4LlUoFiUSClJSUFpWDMVfhrJ9JgHPU1crp6jnK04Eyi6jVauHfmZmZiI+PR2lpqbDOy8vL6u9ZUFCAcePGYc2aNWjXrh3S0tIQFRWFM2fOYNCgQQCAPXv2IDY2Fu+//z7Cw8Nx8eJFIRw2btxo9TIBznssXKWcVVVVCAkJwfPPP4/ly5dbvQyMOStn/UxyjnKO2p3ZI5o6AA/W7NyMDdx7+PBhGjx4MHl6elL37t1pxYoV9ODBAyIiSkxMJH9/f7p165awfVRUFEVERJBGo6Hg4GCDgXn1A/ca069fP0pMTBQev/LKK/T4448bbPPqq6/SqFGjqLaW6PhxoowM3c/a2pbWvCFnOhauWM7g4GDauHGjSXWwNrHnjNjr5+qc6TPJOco5aimegYk5jLEpzRQKBaWnp1NZWRnl5uaSSqWiFStWEBFRbW0tjRgxgqZMmUJERFu3biWlUklXrlwhIqKbN28SAEpLSyO1Wk03b940+r4ajYaCgoLo3XffFdbt3buXlEolnTlzhoiIysrKqE+fPjRjxloKDCQCHi6BgUQWTDDhMsfCFcvpiiHqKsReP1fnTJ9JzlHOUUtxY5Q5TP0PZEREBK1Zs8Zgm127dpG/v7/wuKysjHx8fOiNN94gb29v2r17t8H2AOjgwYNNvu+6deuoffv29MMPPxisT01NJXd3d5LJZASAIiMXk0RiGKAAkUSiW1oSpPW/Jdi507mORWOc7Xem54oh6irEXj9X52yfSXvmKJFhlr7xhnMdi8Y42+9MzxVzlBujrMXqfyC9vb1JLpdTmzZthEUulxMA+uWXX4Tttm/fTgAoOjq6wT6b+0BmZGSQt7c35eXlGaw/fvw4denShd577z368ssv6cCBbJJKgwhY2SBE9UEaFGTZpaasLGrwLYGvbxp5ezvHsWiKM/3O6nLFEHUVYq+fq3Omz6Q9c5TIWJamkUSiFBq4zpJP9TnT76wuV8xRvoGJWZ1Wq0ViYiKmTp3a4Dm5XC78u6CgAFKpFFeuXEFtbS1kMtP+HDMzMzFv3jzs378fY8eONXju7bffxqxZszB//nwAwO3bv4FG8wuAlwHEof4AEkRAeTlQWAj89rem1zE7G3juOd3r6/r554fPT53q2GNhDlcpJ2OtRWvIUaDxLCXSrT9wwHXyyVXK6Yx4aCdmdYMHD0ZpaSl69OjRYHFz0/3JZWZmIjs7G/n5+SgvL0dSUpLBPtzd3aHRaBrse+/evZgzZw4yMjIwceLEBs9XVVUJ7wEAuhsfpXjYJ9y4OjdINkujAZYtaxiedcXE6LZz5LEwh6uUk7HWQuw5CpiepYMGuUY+cY62gI2+qbUqvrzk3Ix14pbJZJSQkEBfffUVlZSU0L59+yguLo6IiMrLy8nX15dSU1OJiCg3N5fc3d3p9OnTwj569uxJixcvJrVaTT/99BMR6S5PyGQy2rx5M6nVamG5c+eO8LqEhATy8fGhvXv30rfffkt//WsuAaEEvGD08pJ+OX7c9PoeP974foA0ApTCPh15LCz9nX3xxVeUnl5Cf/jDPpo5M45qa21bzurqaioqKqKioiLy9/en1157jYqKiujSpUum/1KsQOw5I/b6ubrWlqNETWXpwxwFiJKTOUfFnqPcGGUtZmx4i5ycHAoPDycvLy9SKBQ0dOhQ2rFjB2m1WnriiScoMjKStFqtsP3y5cspNDSU7t69S0S64TF69OhBMplMGN5izJgx+tNyg2X27NnCfh48eEArVqyg0NBQksvlFBQURG3aLCHg50YDVCol+n//z/T6ZmSY1hjNyHDssbDkd9a7dzhJJF4EKAgYSsAO6tpVS7/5je3KefnyZaPbjBkzxuTfiTWIPWfEXj9X19pylKipLDVsjGZkcI6KPUclRE19Qe4cKisroVQqUVFRAYVC4ejiMBfTWJ+kuiQSXd8kI119GsjPBx57rPntjh83v/+UIzV2nCQS3U9Tj4+rEnvOiL1+zLasnaOAOLOUc9SynOHGKGsVDhwAfvc7XR8lYyQSIDAQuHwZkEqb3pdGA6hUwLVrxoPZnH05C32drl41/rwr1slcYs8ZsdeP2Z41cxQQX5ZyjlqeM3wDE2sVOnZsPEABw7tBmyOVAps26f6tP9vV0z9OSXGtsCksbDxAAfOOD2NMnKyZo4D4spRz1HLcGGWtgql3eZq63dSpum8JunY1XB8Y6JqXYax9fBhj4mOLnBBTlnKOWo7HGWWtgr+/dbcDdCE5ebLuLFet1r02IsJ1zuLrssXxYYyJi61yQixZyjlqOe4zyloFsfVNsjY+PuLPGbHXj9ke50TT+Phwn1HGmiS2vknWxseHMdYczomm8fGxnEWN0S1btqB79+6Qy+UICwtDoYm9cU+ePAmZTIaBAwda8raMtYiY+ibZAh8fxlhzOCeaxsfHMmY3RjMzMxETE4O4uDgUFRUhIiICEyZMwPfff9/k6yoqKvDiiy/iiSeesLiwjLXU1KnAlSu6cesyMnQ/L1/mgNCzxvGRSCRNLnPmzGlRGSUSCQ4dOmSwTq1WY/r06ejduzfc3NwQExPT4HUPHjzAypUrERoaCrlcjgEDBiAnJ6dFZWGsNeIcbRrnqPnMvoFpw4YNmDdvHubPnw8ASElJwdGjR7F161asXbu20dctXLgQ06dPh1QqbXAAGLMnqdR1BlB2hJYeH3WdW0UzMzMRHx+P0tJSYZ2Xl1cLSmdcdXU1OnXqhLi4OGzcuNHoNm+99RZ2796N9957D3369MHRo0fxzDPP4NSpUxg0aJDVy8SYmHGONo1z1DxmfTNaU1ODc+fOYfz48Qbrx48fj1OnTjX6urS0NJSVlSEhIcGk96murkZlZaXBwhhzDX5+fsKiVCohkUgM1hUUFCAsLAxyuRwhISFITExEbW0tAGDlypUICAjA7du3hf1NmjQJo0ePhlarhUqlAgA888wzkEgkwmOVSoVNmzbhxRdfhFKpNFquXbt24c9//jOeeuophISEYPHixYiMjMQ777xj0+PhKJyjjLmu1pajZjVGb926BY1Ggy5duhis79KlC27cuGH0NZcuXUJsbCz27NkDmcy0L2LXrl0LpVIpLEFBQeYUkzGHcdZLKwCQlZWFfv36wdPTE/369cPBgwdbVBZLHD16FDNnzsTSpUtRUlKC7du3Iz09HatXrwYAxMXFQaVSCVdetm3bhoKCAuzatQtubm44e/YsAN0JrlqtFh6borq6GnK53GCdl5cXTpw4YaXaORfOUeaqOEebJsYctegGJkm928SIqME6ANBoNJg+fToSExPRq1cvk/f/5ptvoqKiQljKy8stKSZjdqdWq4UlJSUFCoXCYN0m/a2WVlT30sqAAQOMbnP69GlER0dj1qxZ+OKLLzBr1iy88MILOHPmjNXL05TVq1cjNjYWs2fPRkhICMaNG4ekpCRs374dACCVSrF7924cO3YMsbGx+OMf/4jNmzcjODgYANCpUycAQLt27eDn5yc8NkVkZCQ2bNiAS5cuQavVIi8vD//4xz8MLoeJCecoc1Wco00TZY6SGaqrq0kqlVJ2drbB+qVLl9Lo0aMbbP/zzz8TAJJKpcIikUiEdceOHTPpfSsqKggAVVRUmFNc5iAAmlxmz57d4v0fPHjQYN3169dp2rRp1KtXL5JIJLRs2bIGr/vqq69o6tSpFBwcTABo48aNLSpHc9LS0kipVBqsO3z4MA0ePJg8PT2pe/futGLFCnrw4AERESUmJpK/vz/dunVL2D4qKooiIiJIo9EI5dYvwcHBDd5zzJgxRuv+wgsv0JNPPmmwLjIykn73u9+1uJ5NqX8MvL29SS6XU5s2bYRFLpcTAPrll1+E7bZv304AKDo6usE+jf3+62rsGNy8eZMmT55Mbm5uJJVKqVevXrRkyRLy8vIiIvHnjNjrJzacozqco60jR836ZtTDwwNhYWHIy8szWJ+Xl4fw8PAG2ysUCpw/fx7FxcXCsmjRIvTu3RvFxcUYNmyYOW/PXISzntVWVVUhJCQEf/nLX+Dn52f1MjTHkZdWTp8+3aCvd2RkZJN9va1BqwVqa4G9e4H8fECr1SIxMdEgE86fP49Lly4ZXPopKCiAVCrFlStXhH5QLdWpUyccOnQIv/zyC7777jv85z//Qdu2bdG9e3er7J8xa+IcNY5zVKQ5albTlYj27dtH7u7utHPnTiopKaGYmBhq06YNXblyhYiIYmNjadasWY2+PiEhgQYMGGDWe/IZvetyprPauoKDg+1+Rh8REUFr1qwx2GbXrl3k7+8vPC4rKyMfHx964403yNvbm3bv3m2wPSw8m3V3d6c9e/YYrNuzZw95eHgIj2triY4fJ8rI0P2srW22ik3KyiLy9U0jQEm6+UiIPDzC6fHH5zb5un379pGXlxcVFhZSQEAAxcfHN6jLgQMHGn29Kb9/IqKamhoKDQ2lN998k4jEnzNir5+YcY4qhceco+LMUbOHdoqOjsbt27excuVKqNVq9O/fH0eOHBH6IqjV6mbHHGWtl/6sNjU1FRERESgrK8PLL78MAEhISEBcXBxycnIwf/58HDx4UDir/eKLL4Sz2s6dOyMtLQ1PPvkkpC40lcW5c+dw9uxZ4Qwe0PWrvn//PqqqquDt7Y2QkBCsX78eCxcuRHR0NGbMmGG192+qr3d2NrBsGXD16sPnAwN1s4lYMnZgdjbw3HMNp8SrqYnHv//9NKKjgxAf/zzc3Nzw5Zdf4vz581i1ahWuXr2KxYsXIzk5GaNGjUJ6ejomTpyICRMmYPjw4QB0d3weO3YMI0eOhKenJ3x9fQEAxcXFAIB79+7hxx9/RHFxMTw8PNCvXz8AwJkzZ3Dt2jUMHDgQ165dw4oVK6DVavH666+bX0HGHIhzlHNUdDlqVtPVQfiM3nU501ltXY44o5fL5ZScnEyXLl1qsGg0GmG7GTNmkFQqpWHDhgnfdOhZWvegoCDasGGDwboNGzZQt27dKCuLSCIh4axbv0gkuiUry7x619YSBQbq92N4Rq9bcsjDI5y8vLxIoVDQ0KFDaceOHaTVaumJJ56gyMhI0mq1wv6WL19OoaGhdPfuXSLSfSPUo0cPkslkBt/owEi/urrP5+fnU9++fcnT05M6dOhAs2bNomvXrgnPiz1nxF4/MeMcVQqPOUfFmaPcGGU25Uwdr+tyRIiGh4fT3LmOubTywgsv0IQJEwzWPfnkkxQd/bs6gWc8SIOCzLvUdPx44/uruxw/bvo+7UHsOSP2+okZ56hSeMw5Ks4cNfsyPWMtoe94PdXINYumOl6bOkatM4uPj8fTTz+NoKAgPP+8fS+tLFu2DKNHj0ZycjImT56Mf/zjH/jXv/6FTZtOIDOz8TITAeXlQGGh6bOJmDrCh0hHVGLM5jhHOUfN3c7p2ahxbFV8Ru+6nOmsti5HnNETEeXk5FB4uP0vrRAR7d+/n3r37k3u7u7Up08fysrKoowM086+MzJMr3drO6N3FWKvn5hxjioN1nGOii9HuTHKbKp+kOTk5JBMJqOEhAT66quvqKSkhPbt20dxcXFERFReXk6+vr6UmppKRES5ubnk7u5Op0+fFvbRs2dPWrx4ManVavrpp5+E9UVFRVRUVERhYWE0ffp0KioqogsXLgjPV1dXC9v4+/vTa6+9RkVFRXTp0iUbHwXnZYvA0/d1MtZ/ytJLVvYg9pwRe/3EjHPUuXGOPsSNUeaUnOms9vLly0a3GTNmjA2PgHOzVeDpO/PX36+lnfntQew5I/b6iRnnqHPjHH3I0pyREBHZqguAtVRWVkKpVKKiogIKhcLRxWFMVPTDhwC6qNPTj2By4IDlw5LUH+YkKAhISbFsf7Ym9pwRe/0YcyTOUR1Lc4Ybo4wxmwWeRqPrtK9WA/7+QEQE4KxDGoo9Z8ReP8YcjXPU8pxx/VvrGGMWqR9wZWXAqVPWDTyp1PS7RxljzNVwjloHN0YZa4Wamilk2jTHlYsxxlwF56j1uDm6AIwx+9L3baoboABw7ZpufXa2Y8rFGGOugnPUurgxylgrotHozuSN9RTXr4uJ0W3HGGOsIc5R6+PGKGMWkEgkTS5z5sxp8f4PHTpksE6tVmP69Ono3bs33NzcEBMTY/S1KSkp6N27N7y8vBAUFITly5fj/v37AHR9m+qfyddVd6YQxhhjDXGOWh/3GWXMAuo6c7BlZmYiPj4epaWlwjovLy+rv2d1dTU6deqEuLg4bNy40eg2e/bsQWxsLN5//32Eh4fj4sWLQsN448aNrW+KOcYYszLOUevjb0YZs4Cfn5+wKJVKSCQSg3UFBQUICwuDXC5HSEgIEhMTUVtbCwBYuXIlAgICcPv2bWF/kyZNwujRo6HVaqFSqQAAzzzzDCQSifBYpVJh06ZNePHFF6FUKo2W6/Tp0xg5ciSmT58OlUqF8ePHY9q0afjss88A6O7uNIWp2zHGWGvDOWp93BhlzMqOHj2KmTNnYunSpSgpKcH27duRnp6O1atXAwDi4uKgUqkwf/58AMC2bdtQUFCAXbt2wc3NDWfPngUApKWlQa1WC49NMWrUKJw7dw6ffvopAODbb7/FkSNHMHHiRAC6YUYCAx8OxFyfRKIbFy8iwtLaM8aY5VyhC9SECV6QSoMALAdw38h7cI6aiy/TM2Zlq1evRmxsLGbPng0ACAkJQVJSEl5//XUkJCRAKpVi9+7dGDhwIGJjY/Huu+9ix44dCA4OBgB06tQJANCuXTv4+fmZ9d6/+93v8OOPP2LUqFEgItTW1mLx4sWIjY0FoBuvbtMm3d2eEonxmUJSUpx3QGXGmLi5Sheo99+/iKSkOf999uFrOEctw9+MMmZl586dw8qVK9G2bVthWbBgAdRqNaqqqgDoGqjr169HcnIyoqKiMGPGDKu8d35+PlavXo0tW7bg888/R3Z2Nj788EMkJSUJ20ydqpuarmtXw9cGBlo+ZR1jjFmDq3SBWrlyPKKipsHD4zOD7ThHLcPfjDJmZVqtFomJiZhqJI3kcrnw74KCAkilUly5cgW1tbWQyVr+cXz77bcxa9YsoQvAb37zG/zyyy94+eWXERcXBzc33fnn1KnA5MmuM8UcY4zpu0ClpqYiIiICZWVlePnllwEACQkJiIuLQ05ODubPn4+DBw8KXaC++OILoQtU586dkZaWhieffBJSMwJv1KhR2L17Nz799FMMHToU3377LS5dOoKEhNkID+ccbSlujDIG6879O3jwYJSWlqJHjx6NbpOZmYns7Gzk5+cjOjoaSUlJSExMFJ53d3eHxoJB6qqqqoQGp55UKgURgeoNitcapphjjNmPredQd8YuUH/+c6z1KtiKcWOUtXpNTelmyaWW+Ph4PP300wgKCsLzzz8PNzc3fPnllzh//jxWrVqFq1evYvHixUhOTsaoUaOQnp6OiRMnYsKECRg+fDgA3WWjY8eOYeTIkfD09ISvry8AoLi4GABw7949/PjjjyguLoaHhwf69esHAIiKisKGDRswaNAgDBs2DN988w3efvttTJo0yaxvARhjzBzWzlFjzp07h7Nnzwo3gwKARqPB/fv3UVVVBW9vb6EL1MKFCxEdHW2TLlD6bF22bBn8/f3x9ttvW+U9WjVyARUVFQSgyWX27Nkteg8AdPDgQYN1169fp2nTplGvXr1IIpHQsmXLjL72559/piVLlpCfnx95enpSnz596KOPPmpReZh9ZGURSSREult5Hi4SiW7Jymp+H2lpaaRUKg3W5eTkUHh4OHl5eZFCoaChQ4fSjh07SKvV0hNPPEGRkZGk1WqF7ZcvX06hoaF09+5dIiI6fPgw9ejRg2QyGQUHBwvbGfvbr/v8gwcPaMWKFRQaGkpyuZyCgoJoyZIl9PPPP7fgKDmP2lqi48eJMjJ0P2trrbdvfc5UVFRYb6dOhHOU2Yo1ctSY+tkql8spOTmZLl261GDRaDTCdjNmzCCpVErDhg2jBw8eGOzT2N9oXWPGjDH6Nzpq1Ch67bXXDNbt2rWLvLy8DN7bFThjjrrUN6MXL16Ej4+PU91hV1NTg3HjxqFz5844cOAAAgMDUV5eDh8fH6uXh1lXc1O6SSS6Kd0mT276UtOcOXMaDDcSGRmJyMhIo9v/61//arBuw4YN2LBhg/A4KioKUVFRRsplpLB1yGQyJCQkICEhocntXJE9vnlpDThHmTVZK0dN4SpdoJyZ0+ao9drDtlO/pW3sm6jDhw/T4MGDydPTk7p3704rVqwQzogSExPJ39+fbt26JWwfFRVFERERpNFoKDg4uNFvmvQaO1vaunUrhYSEUE1NjdXq2xrY8szMVMePNzyTN7YcP27/sjFDtvrmpa7W8s0o56h4iD1H6/+N5uTkkEwmo4SEBPrqq6+opKSE9u3bR3FxcUREVF5eTr6+vpSamkpERLm5ueTu7k6nT58W9tGzZ09avHgxqdVq+umnn4T1RUVFVFRURGFhYTR9+nQqKiqiCxcuCM8nJCSQj48P7d27l7799lvKzc2l0NBQeuGFF8yvmIM4c46KojGak5NDCoWC0tPTqaysjHJzc0mlUtGKFSuIiKi2tpZGjBhBU6ZMISJd8CmVSrpy5QoREd28eZMAUFpaGqnVarp582aDMjQWohMmTKAZM2bQggULqHPnzvTII4/Q6tWrqdYRqeAisrKIAgMNPwyBgdb5IJgjI8O0EM3IsG+5mKHa2oZ/L/WDNCio5f8Rt/bGKOeoa2kNOcpdoKzH2XNUFI3RiIgIWrNmjcFrdu3aRf7+/sLjsrIy8vHxoTfeeIO8vb1p9+7dBtvDwn4kvXv3Jk9PT5o7dy599tlntHfvXmrfvj0lJiaaX9FWwB5nZqbib0Zdg71+T629Mco56jo4R5m5nD1HRdEY9fb2JrlcTm3atBEWuVxOAOiXX34Rttu+fTsBoOjo6AbvYWmI9uzZk4KCggzO4N955x3y8/Mzv6Ii1/iZmf1vqiAiOnYsn9zdBxPgSUB3Arba5EyRtYy9vsFu7Y1RzlHX0PQ3XPbP0tpaok6d8gkwnqWco87B2XPUpW5gaowjBxn39/eHu7u7wbA5ffv2xY0bN1BTUwMPD48Wv4dYFBYadpp+SF3n35lo0yYe33xj25sqLl++jKiopzB+/AJ89NFuACcBLAHQCcCzPKWbE/H3t+52zDjOUdfQeI4CdbP0lVcysWuX7W9Q+/77y6isfArAAgCGWSqRPAugdeWoRP+fRyNmz56N9PT0Fu3/4MGDmDJlirAuOzsbW7duRXFxMaqrq/HII49gxYoVBjfRJif/FsDHRvb4FICPhEeOylFRTAda9w67+ov+7re6d9iVl5cbTI8IWH6H3ciRI/HNN99Aq9UK6y5evAh/f38O0HrU6sae8auzKEFk++nftm3bhm7duuHDD1OQldUXgYHzAcwFsB4AT+nmTCIidL+PxjJeIgGCgnTbMctxjrqGxnMUqJultbX2mUpz27Zt6N69G7KyUhAY2BfAwyxtjTmqVquFJSUlBQqFwmDdpk2brP6eBQUFGDduHI4cOYJz587hscceQ1RUFIqKioRt8vKy4e+vhu6ERQ3gKwBSAM8DcIIcbdkXsvZhSsd7R91h9/3331Pbtm3p97//PZWWltKHH35InTt3plWrVtnykLgk0/qspFGbNkrhNba6qSIiIoKWLl0qvE9tLdHKldkklcooL6+GLyk5GX0fufr95JzhLlBXwTkqDqb2/XvjDfvcoFY3S/V39y9frsvSX39t3aMjOGLECr1+/fo16HNtmKMbCfAh4J5T5KgoGqNEDe+w69NnKM2fv4P+/W8tPf647e6wIyI6deoUDRs2jDw9PSkkJITvAm2Evq+TsY73+oZF+/b2uamiZ8+etHr1aoN1J0+eJAB0/fp161RYBIz9/dddbNEHLSsri8aOHUsdO3YkHx8fGj58OOXk5NS7e3iM0fI89dRTFpeltTdGiThHXYEpORoURLRzJ2epozlixAoiIo1GQ0FBQfTuu+82eO5hjvYnYAEBur8Xa9301qoao02x53AXjhzjzZkaCXXV1NRQYmIihYSEkKenJz366KP0z3/+s84+mv6G65VX7HNTRc+ePRsE84kTJwgAqdVqM4+WeKnVamFJSUkhhUJhsO7OnTst2r+x382yZcsoOTmZPv30U7p48SK9+eab5O7uTp9//rnwmdux4zZlZanp6lVdOb766iuSSqWUlpZmcVlaW2O0KZyjrp2jWVn2u0GNs7Rxjhixgoho3bp11L59e/rhhx+MPn/q1BkCQCtXnnGaGZhE1Ri153AXjh7jzdkaCXqvv/46BQQE0EcffURlZWW0ZcsWksvlBtsYO3b6MzN7Tf9W/zI9EVF2djbJZDIeeLsRznbJqa6NGzeSj48P3bt3z+L6cWNUh3PU9XOUiLPUGThixIqMjAzy9vamvLy8Rrd5+eWXqX///hbVqTmtvjFqrwFdiZxrjDci52ok+Pv709/+9jeDbSZPnkwzZswwWNfYtyH16xIeHk5z585tsv779u0jLy8vKiwspICAAIqPjzd43t3dnQ4cOGCw7vXXX6e+ffsarFu0aBENHz68yfdqzZzxkpNe//79acGCBS2qHzdGOUfFkqPG6sNZan/2OiHQ0//+Pvzww0bL9Msvv5BCoaCUlJQW1a0xdm2Mbt68mVQqFXl6etLgwYOpoKCg0W1NuSTRHFMqZ68BXe0Z1qZypkZC+/bt6e9//7vBdr/73e+aDOLm6mKLmyq+/fZb8vb2puXLl1NJSQnt3LnTaNCyh5z1ktOZM7pLTmfOnDGvQvVwY5RzVCw52lh9OEvty14nBES6b0TlcnmzeZqWlkaenp4GJ1HWZLfG6L59+8jd3Z3ee+89KikpoWXLllGbNm3ou+++M7q9KZckmmNK5ew1oKszzjbhTI2EadOmUb9+/ejixYuk0WgoNzeXvLy8yMPDw6K6ENlu+rf8/HwaNGgQeXh4kEqloq1bt5pUxtZK7JecuDHKOSqWHDVWHyLOUnuz1wlBRkYGyWQy2rx5c7PdTEaNGmU0i63Fbo3RoUOH0qJFiwzW9enTh2JjY03eR3P9v+pzpjN6Z5zP3JkaCTdv3qTJkyeTm5sbSaVS6tWrFy1ZsoS8vLxaXE/mWGK/5MSNUc5RzlFmTfY6IRgzZgyZcgNeaWkpAaDc3Fyb1dkujdHq6mqSSqWUnZ1tsH7p0qU0evRok/ZhSv+v+/fvU0VFhbCUl5c3WzlTh7to6WUfVzijd4ZGwq+//kpXr14lrVZLr7/+OvXr169FdWSOJ/ZLTmJrjHKOmodzlLGWs0tj9Nq1awSATp48abB+9erV1KtXL5P20Vz/LyKihIQEo618U+8CteXA2PYKa3M4YyNBr6amhkJDQ+nNN980aXvmvMR+yUlsjVHOUfNwjjLWcnZtjJ46dcpg/apVq6h3797Nvt6U/l9Elp3R6zU33IU12COszeFMjYRPPvmEsrKyqKysjAoKCujxxx+n7t27088//2z7A8FsSuyXnMTWGOUcNQ/nKGMt5/SX6U25JNEYcyunH+7ClgMaZ2Xp93/QIKz/9CfzRg/Yu3cvAaDJkydbXBZnaiTk5+dT3759ydPTkzp06ECzZs2ia9euWVw3xuxFbI3R+jhHm8Y5yljLWZqjEiIimGHYsGEICwvDli1bhHX9+vXD5MmTsXbtWqOv2bt3L+bOnYu9e/diypQp5rwdAKCyshJKpRIVFRVQKBQmv+7GjRvCvzMzMxEfH4/S0lJhnZeXF5RKpdnl0ZNIJEhKOojQ0Cnw9wciIoA//jEGAQEBeOyxx9CuXTukpaVh/fr1OHPmDAYNGmTw+u+++w4jR45ESEgI2rdvj0OHDllcFubcNBqgsBBQqyH8rUilji4Vq8vSnHEVnKPM1XGOOj+Lc9TcVq9+aKedO3dSSUkJxcTEUJs2bYSx1WJjY2nWrFnC9ub0/2qMNb6xcKYBjYl0Y9SNHDmS/v73v9Ps2bNbdEbPnJujZ5lhpuFvRpvHOcochXPUNdh90Pvg4GDy8PCgwYMH08cffyw8N3v2bBozZozw2NT+X02xRYg6evaY+Ph4Yd8couLlbLPMsMZxY7R5nKPMEThHXUernw60Oc40oPGJEyeoa9eu9OOPPxIRh6hYOeMsM6xx3BhtHucoszfOUdfCjdFmOMuAxpWVlaRSqejIkSPCOg5RcWp+LEXb3RhCZPzv8/r16zRt2jTq1asXSSQSWrZsWYPXNXY146mnnmpReZwdN0abxznK7I1z1LVYmjMy03uXiotWq0ViYiKmTp3a4Dm5XC78u6CgAFKpFFeuXEFtbS1kMtMOWWZmJubNm4f9+/dj7NixwvqysjJcuXIFUVFRBmUBAJlMhtLSUoSGhlpaLeZE1OpmtwAAbNkC1NQYvzHE2qqrq9GpUyfExcVh48aNRrfJzs5GTU2N8Pj27dsYMGAAnn/+eauXh7k2zlFma5yjrYSNGsdWZYszekcNaPzrr7/S+fPnDZbJkyfT448/TufPn6fq6mqL6secjzmzzDjixpAxY8YYPaOvb+PGjeTj40P37t2z/GC4AP5mtHmco8zeOEddC1+mb4YzDWhcH19eMk3dUDC22OJyTFZW8+MdpqWlGS3PvXu/mjzLjCNuDDE1RPv3708LFiwwWKcfgzIjQ/dTDP21uDHaPM5R18c5yjlqS9wYbYYzDWhcH4eoaer+p5SSkkIKhcLi4cKMMRaiy5Yto+TkZPr000/p4sWL9Oabb5K7uzt9/vnnwjZpaWkNyqJWq4nI9FlmHHFjiCkheubMGQJAZ86cEdaJdYgVbow2j3PU9XGOco7aEjdGWaviTOMdGitLXaZMreiIG0NMCdGXX36Z+vfvb1AXsQ6xIvacEXv9mPk4R3U4R62Hb2BirdrRo0cxc+ZMpKamIiIiAmVlZXj55ZcBAAkJCYiLi0NOTg7mz5+PgwcPYtu2bSgoKMAXX3wBNzc3nD17Fp07d0ZaWhqefPJJSBuZ1kOr1eLu3bto3769wfp79+4hODgYGo0GAwcORFJSkjBTzNSpwOTJ5s0cYusbQ0xRVVWFffv2YeXKlQB0s58sW6aLzfqIAIkEiInR1ZVnRWHM9XCOco46jI0ax1bFZ/SsPmca7/D06dO0a9cuKi4upoKCAnr22WfJy8uLLl68aHF9bHljiF5zZ/RpaWnk6ekpfAtizo0ErkjsOSP2+jHzcY5yjlobX6ZnrYqzjHdojEajoQEDBtAf/vAHi+tjqxtDiIiKioqoqKiIwsLCaPr06VRUVEQXLlxoUKZRo0YZHKeMDNNCNCPD5Go7FbHnjNjrx8zHOco5am3cGGWtSv3QkcvllJycTJcuXWqwaDQaYbsZM2aQVCqlYcOGCf2g9JoKUf3Z84cffmhS+ebPn09PPvmkxfUhss2NIfp61l86dgw2uJuztLSUAFBubq7wOj6jd21irx8zH+co56i1cWOUtSrOMt6hMVqtloYMGUIvvfSSSds7irl3c+qn5TNliBVXJPacEXv9mPk4R1uOc9QQN0ZZq+JM4x2uWLGCcnJyqKysjIqKiuill14imUxmMIyHs7H0bk5Th1hxRWLPGbHXj5mPc7RlOEcb4sYoa1WcabzDmJgY6tatG3l4eFCnTp1o/PjxdOrUKVsfAovpz8wbuzzU3Jm5KUOsuCKx54zY68fMxzlqOc5R4yzNGQmRsQEGnEtlZSWUSiUqKiqgUCgcXRzGXFp+PvDYY81vd/w48NvfGn9OozFviBVXIPacEXv9GLMnzlHjLM0ZHmeUsVZGrW75dlJp4wHLGGNixzlqXW6OLgBjzL78/a27HWOMtTaco9bFjVHGWpmICCAwUDfThzESCRAUpNuOMcZYQ5yj1sWNUcZaGakU2LRJ9+/6Qap/nJLi+n2XGGPMVjhHrYsbo4y1QlOnAgcOAF27Gq4PDNStNzKVs91pNLqbBPbu1f3UaBxdIsYYe4hz1Hq4McqYjUkkkiaXOXPmtHj/hw4dMliXnZ2NcePGoVOnTlAoFBgxYgSOHj1a75XZ6NJlCNq0aQdPzzYIDR2IpKRdThGg2dmASqW7W3X6dN1PlUq3njHW+nCOms+VcpTvpmfMxtR1bqfMzMxEfHw8SktLhXVeXl5Wf8+CggKMGzcOa9asQbt27ZCWloaoqCicOXMGgwYNAgC0b98ecXFx6NOnDzw8PPDhhx9i3ryX4OfXGZGRkVYvk6mys4HnntONvFfXtWu69c7yjQNjzH44R83jcjlqk1FPrYwHa2ZiYWyQ6cOHD9PgwYPJ09OTunfvTitWrBDme05MTCR/f3+6deuWsH1UVBRFRESQRqOh4OBgg0Gk686dXF+/fv0oMTGxyfINGjSI3nrrLYvr11ItHUi6JcSeM2KvH2s9OEeb5oo5ypfpGXOgo0ePYubMmVi6dClKSkqwfft2pKenY/Xq1QCAuLg4qFQqzJ8/HwCwbds2FBQUYNeuXXBzc8PZs2cBAGlpaVCr1cLj+rRaLe7evYv27dsbfZ6IcOzYMZSWlmL06NE2qKlpCguBq1cbf54IKC/XbccYYwDnaH0umaPWbxdbH5/RM7Gof0YfERFBa9asMdhm165d5O/vLzwuKysjHx8feuONN8jb25t2795tsD0AOnjwYJPvu27dOmrfvj398MMPBuvv3LlDbdq0IZlMRp6enrRz507LKmYlGRmNn83XXTIyrP/eYs8ZsdePtR6co01zxRzlPqOMOdC5c+dw9uxZ4QweADQaDe7fv4+qqip4e3sjJCQE69evx8KFCxEdHY0ZM2aY9R579+7FihUr8I9//AOdO3c2eM7HxwfFxcW4d+8ejh07hldffRUhISH4rYOmBeGBpBlj5uIcNeSKOcqNUcYcSKvVIjExEVON9CSXy+XCvwsKCiCVSnHlyhXU1tZCJjPto5uZmYl58+Zh//79GDt2bIPn3dzc0KNHDwDAwIED8fXXX2Pt2rUOC1H9QNLXrjXseA/oxu8LDOSBpBljD3GOGnLFHOU+o4w50ODBg1FaWooePXo0WNzcdB/PzMxMZGdnIz8/H+Xl5UhKSjLYh7u7OzRGBo/bu3cv5syZg4yMDEycONGk8hARqqurW14xC/FA0owxc3GOGnLJHLV+jwHr475O4lZbS3T8uK7/yvHjtrnDz1nU7+uUk5NDMpmMEhIS6KuvvqKSkhLat28fxcXFERFReXk5+fr6UmpqKhER5ebmkru7O50+fVrYR8+ePWnx4sWkVqvpp59+IiKijIwMkslktHnzZlKr1cJy584d4XVr1qyh3NxcKisro6+//preeecdkslk9N577zUoN+rcaWpsmT17douOC+r118rKIvL3v07ANAJ6ESChtm2XUVaW4euysrIoLCyMlEoleXt704ABA+iDDz6wqAxizxmx16+14xx1/hwlsm+WZmXp76o3zNKJE5c1eJ21stTSnOHGKHOohx+Wh0tgIDVodIiFsSFJcnJyKDw8nLy8vEihUNDQoUNpx44dpNVq6YknnqDIyEjSarXC9suXL6fQ0FC6e/cuEemGNOnRowfJZDJhSJIxY8Y0G3RxcXHUo0cPksvl5OvrSyNGjKB9+/YZLXfdIE5JSSGFQtFoOFuifmOUiOibby7T1KlLadGi/6UePQbS0qXLGrzu+PHjlJ2dTSUlJfTNN99QSkoKSaVSysnJMbsMYs8ZsdevNeMcdY0cJbJ/ltbWEu3de5kiI5dSbOz/0sCBA2nZsmUNXmetLOXGKHM5WVm68c6MjYEmkYg3SF2dI8b4GzNmjNEANcbSMf7EnjNir19rxTnqusSYpTzOKDOZI6ZVq+vkyZOQyWT43e8GGu1crV8XE+O88+iyh+w1xl9zyEnG+GOtA+cos7ZWnaVmNV0dhM/orcsRl1z17ty5QyEhITRkyHgCBjQ7Dtrx4y0qCrMBR4zx19TZvLXG+BN7zoi9fvbGOcpaSoxZatdvRrds2YLu3btDLpcjLCwMhc0M4//xxx8jLCwMcrkcISEh2LZtmyVvy6zEz89PWJRKJSQSicG6goICg99XYmIiamtrAQArV65EQEAAbt++Lexv0qRJGD16NLRaLVQqFQDgmWeegUQiER7rLVy4ENOnT0e3biNMKmud6YiZkzp37hxWrlyJtm3bCsuCBQugVqtRVVUFAMIYf8nJyYiKijJ7jL+m6Mf4048z+OqrryI/P99q+2fMGM5RZm2tOUvNHmc0MzMTMTEx2LJlC0aOHInt27djwoQJKCkpQbdu3Rpsf/nyZTz11FNYsGABdu/ejZMnT2LJkiXo1KkTnn32WatUglmP/jJBamoqIiIiUFZWhpdffhkAkJCQgLi4OOTk5GD+/Pk4ePCgcJngiy++EC4TdO7cGWlpaXjyySchrTN2RFpaGsrKyrB7927Mn7/KpPI406C8zDhbj/HXHGcb448xzlFmiVadpeZ+BTt06FBatGiRwbo+ffpQbGys0e1ff/116tOnj8G6hQsX0vDhw01+T768ZDv2ukxw8eJF6ty5M5WWlhIR0dtvJ5C7+wCjHe/1ne+DgsQ9PImrqv83Ex4eTnPnzm3yNfv27SMvLy8qLCykgIAAio+PN3je3d2dDhw40Ojrzel0P3fuXBozZoxJ29Yl9pwRe/0ciXOUWUKMWWqX6UBrampw7tw5xMbGGqwfP348Tp06ZfQ1p0+fxvjx4w3WRUZGYufOnXjw4AHc3d0bvKa6utpgwNjKykpzislawBbTqmk0GkyfPh2JiYno1asXAMDNDejaFfjuO90gvHU74DvtoLzMqPj4eDz99NMICgrC888/Dzc3N3z55Zc4f/48Vq1ahatXr2Lx4sVITk7GqFGjkJ6ejokTJ2LChAkYPnw4AEClUuHYsWMYOXIkPD094evrCwAoLi4GANy7dw8//vgjiouL4eHhgX79+gEA1q5diyFDhiA0NBQ1NTU4cuQIPvjgA2zdutUhx8KZcI46Ducos0SrzlJzWq7Xrl0jAHTy5EmD9atXr6ZevXoZfU3Pnj1p9erVButOnjxJAOj69etGX5OQkGB0bC8+o7e++mdmcrmckpOT6dKlSw0WjUYjbDdjxgySSqU0bNgwYdgJPdQ7o//5558JAEmlUmGRSCQEgNzcpNSx4zGDs/mgIB6OxJnZa4w/IuMDRNd93twx/poitm8OOUfth3OUWUKMWWqXcUb1jdFTp04ZrF+1ahX17t3b6Gt69uzZ4HLFiRMnCACp1Wqjr7l//z5VVFQIS3l5OYeojdjjMoFGo6Hz588bLIsXL6bevXvT+fPnqaLiXquZOYQ5L7E1RjlH7YdzlDEdu1ym79ixI6RSKW7cuGGw/ubNm+jSpYvR1/j5+RndXiaToUOHDkZf4+npCU9PT3OKxqzEVpcJ+vfvb/A+nTt3hlwuF9bzvSaMWRfnqONwjjJmHrOGdvLw8EBYWBjy8vIM1ufl5SE8PNzoa0aMGNFg+9zcXAwZMsRof1HmWJGRkfjwww+Rl5eH//mf/8Hw4cOxYcMGBAcHg4gwZ84cDB06FL///e8BAOPGjcPvf/97zJw5E/fu3QMAvPPOO8jLy0NQUBAGDRrkyOowxpjdcY4yZh4JkbG5GxqXmZmJWbNmYdu2bRgxYgR27NiB9957DxcuXEBwcDDefPNNXLt2DR988AEA3dBO/fv3x8KFC7FgwQKcPn0aixYtwt69e00e2qmyshJKpRIVFRVQKBTm15Ixxpoh9pwRe/0YY45nac6YPThVdHQ0bt++jZUrV0KtVqN///44cuQIgoODAQBqtRrff/+9sH337t1x5MgRLF++HJs3b0ZAQABSU1PNGmNU317mu0EZY7aizxczz89dBucoY8zWLM1Rs78ZdYSrV68iKCjI0cVgjLUC5eXlCAwMdHQxrI5zlDFmL+bmqEs0RrVaLa5fvw4fHx9I9IOn/VdlZSWCgoJQXl4uqktPYqyXGOsEiLNeYqwT0HS9iAh3795FQEAA3NwsminZqXGOiqNeYqwTIM56ibFOgG1y1DpzSNmYm5tbsy1shUIhql+2nhjrJcY6AeKslxjrBDReL6VS6YDS2AfnqLjqJcY6AeKslxjrBFg3R8V3+s8YY4wxxlwGN0YZY4wxxpjDuHxj1NPTEwkJCaIb3FmM9RJjnQBx1kuMdQLEW6+WEutxEWO9xFgnQJz1EmOdANvUyyVuYGKMMcYYY+Lk8t+MMsYYY4wx18WNUcYYY4wx5jDcGGWMMcYYYw7DjVHGGGOMMeYw3BhljDHGGGMO4xKN0S1btqB79+6Qy+UICwtDYWFhk9t//PHHCAsLg1wuR0hICLZt22ankprHnHplZ2dj3Lhx6NSpExQKBUaMGIGjR4/asbSmMfd3pXfy5EnIZDIMHDjQtgW0gLl1qq6uRlxcHIKDg+Hp6YnQ0FC8//77diqt6cyt1549ezBgwAB4e3vD398fL730Em7fvm2n0javoKAAUVFRCAgIgEQiwaFDh5p9jatkhTVwjnKOOpoYs5Rz1EpZQU5u37595O7uTu+99x6VlJTQsmXLqE2bNvTdd98Z3f7bb78lb29vWrZsGZWUlNB7771H7u7udODAATuXvGnm1mvZsmWUnJxMn376KV28eJHefPNNcnd3p88//9zOJW+cuXXSu3PnDoWEhND48eNpwIAB9imsiSyp06RJk2jYsGGUl5dHly9fpjNnztDJkyftWOrmmVuvwsJCcnNzo02bNtG3335LhYWF9Mgjj9CUKVPsXPLGHTlyhOLi4igrK4sA0MGDB5vc3lWywho4R3U4Rx1HjFnKOWq9rHD6xujQoUNp0aJFBuv69OlDsbGxRrd//fXXqU+fPgbrFi5cSMOHD7dZGS1hbr2M6devHyUmJlq7aBaztE7R0dH01ltvUUJCgtOFqLl1+uc//0lKpZJu375tj+JZzNx6/fWvf6WQkBCDdampqRQYGGizMraEKSHqKllhDZyjjeMctQ8xZinnqPWywqkv09fU1ODcuXMYP368wfrx48fj1KlTRl9z+vTpBttHRkbis88+w4MHD2xWVnNYUq/6tFot7t69i/bt29uiiGaztE5paWkoKytDQkKCrYtoNkvqdPjwYQwZMgTr1q1D165d0atXL7z22mv49ddf7VFkk1hSr/DwcFy9ehVHjhwBEeGHH37AgQMHMHHiRHsU2SZcISusgXO0cZyj9iHGLOUc1bFWVsisXTBrunXrFjQaDbp06WKwvkuXLrhx44bR19y4ccPo9rW1tbh16xb8/f1tVl5TWVKv+t555x388ssveOGFF2xRRLNZUqdLly4hNjYWhYWFkMmc70/Rkjp9++23OHHiBORyOQ4ePIhbt25hyZIl+Omnn5ymr5Ml9QoPD8eePXsQHR2N+/fvo7a2FpMmTcK7775rjyLbhCtkhTVwjjaOc9Q+xJilnKM61soKp/5mVE8ikRg8JqIG65rb3th6RzO3Xnp79+7FihUrkJmZic6dO9uqeBYxtU4ajQbTp09HYmIievXqZa/iWcSc35NWq4VEIsGePXswdOhQPPXUU9iwYQPS09Od5oxez5x6lZSUYOnSpYiPj8e5c+eQk5ODy5cvY9GiRfYoqs24SlZYA+eoIc5R+xNjlnKOWicrnPM06r86duwIqVTa4Czj5s2bDVrien5+fka3l8lk6NChg83Kag5L6qWXmZmJefPmYf/+/Rg7dqwti2kWc+t09+5dfPbZZygqKsLvf/97ALrwISLIZDLk5ubi8ccft0vZG2PJ78nf3x9du3aFUqkU1vXt2xdEhKtXr6Jnz542LbMpLKnX2rVrMXLkSPzpT38CADz66KNo06YNIiIisGrVKqf4psxcrpAV1sA52hDnqH2JMUs5R3WslRVO/c2oh4cHwsLCkJeXZ7A+Ly8P4eHhRl8zYsSIBtvn5uZiyJAhcHd3t1lZzWFJvQDdmfycOXOQkZHhdH1MzK2TQqHA+fPnUVxcLCyLFi1C7969UVxcjGHDhtmr6I2y5Pc0cuRIXL9+Hffu3RPWXbx4EW5ubggMDLRpeU1lSb2qqqrg5mYYF1KpFMDDs2BX4wpZYQ2co4Y4R+1PjFnKOapjtaww63YnB9APnbBz504qKSmhmJgYatOmDV25coWIiGJjY2nWrFnC9vphBpYvX04lJSW0c+dOpx6SxNR6ZWRkkEwmo82bN5NarRaWO3fuOKoKDZhbp/qc8S5Qc+t09+5dCgwMpOeee44uXLhAH3/8MfXs2ZPmz5/vqCoYZW690tLSSCaT0ZYtW6isrIxOnDhBQ4YMoaFDhzqqCg3cvXuXioqKqKioiADQhg0bqKioSBhmxVWzwho4R3U4Rx1HjFnKOWq9rHD6xigR0ebNmyk4OJg8PDxo8ODB9PHHHwvPzZ49m8aMGWOwfX5+Pg0aNIg8PDxIpVLR1q1b7Vxi05hTrzFjxhCABsvs2bPtX/AmmPu7qstZQ9TcOn399dc0duxY8vLyosDAQHr11VepqqrKzqVunrn1Sk1NpX79+pGXlxf5+/vTjBkz6OrVq3YudeOOHz/e5GfElbPCGjhHOUcdTYxZyjlqnayQELnod8OMMcYYY8zlOXWfUcYYY4wxJm7cGGWMMcYYYw7DjVHGGGOMMeYw3BhljDHGGGMOw41RxhhjjDHmMNwYZYwxxhhjDsONUcYYY4wx5jDcGGWMMcYYYw7DjVHGGGOMMeYw3BhljDHGGGMOw41RxhhjjDHmMP8fmoRicYklf10AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharex=True, sharey=True)\n", "axes = axes.ravel()\n", "\n", "for k, ax in enumerate(axes):\n", " np.random.seed(0)\n", " x, y = np.random.random((2,30))\n", " ax.plot(x, y, 'bo')\n", "\n", " texts = []\n", " for i in range(len(x)):\n", " t = ax.text(x[i], y[i], 'Text%s' %i, ha='center', va='center')\n", " texts.append(t)\n", " adjust_text(texts, ax=ax)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "adjusttext", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "vscode": { "interpreter": { "hash": "2c4acb23a451f4fe2bb80d589eb9794a8ef98f196bb0fe57894caf47ebb03df5" } } }, "nbformat": 4, "nbformat_minor": 2 }