Shortcuts

Source code for mmaction.datasets.audio_dataset

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Callable, Dict, List, Optional, Union

from mmengine.utils import check_file_exist

from mmaction.registry import DATASETS
from .base import BaseActionDataset


[docs]@DATASETS.register_module() class AudioDataset(BaseActionDataset): """Audio dataset for action recognition. The ann_file is a text file with multiple lines, and each line indicates a sample audio or extracted audio feature with the filepath, total frames of the raw video and label, which are split with a whitespace. Example of a annotation file: .. code-block:: txt some/directory-1.npy 163 1 some/directory-2.npy 122 1 some/directory-3.npy 258 2 some/directory-4.npy 234 2 some/directory-5.npy 295 3 some/directory-6.npy 121 3 Args: ann_file (str): Path to the annotation file. pipeline (list[dict | callable]): A sequence of data transforms. data_prefix (dict): Path to a directory where audios are held. Defaults to ``dict(audio='')``. multi_class (bool): Determines whether it is a multi-class recognition dataset. Defaults to False. num_classes (int, optional): Number of classes in the dataset. Defaults to None. """ def __init__(self, ann_file: str, pipeline: List[Union[Dict, Callable]], data_prefix: Dict = dict(audio=''), multi_class: bool = False, num_classes: Optional[int] = None, **kwargs) -> None: super().__init__( ann_file, pipeline, data_prefix=data_prefix, multi_class=multi_class, num_classes=num_classes, modality='Audio', **kwargs)
[docs] def load_data_list(self) -> List[Dict]: """Load annotation file to get audio information.""" check_file_exist(self.ann_file) data_list = [] with open(self.ann_file, 'r') as fin: for line in fin: line_split = line.strip().split() video_info = {} idx = 0 filename = line_split[idx] if self.data_prefix['audio'] is not None: filename = osp.join(self.data_prefix['audio'], filename) video_info['audio_path'] = filename idx += 1 # idx for total_frames video_info['total_frames'] = int(line_split[idx]) idx += 1 # idx for label label = [int(x) for x in line_split[idx:]] assert label, f'missing label in line: {line}' if self.multi_class: assert self.num_classes is not None video_info['label'] = label else: assert len(label) == 1 video_info['label'] = label[0] data_list.append(video_info) return data_list