Shortcuts

Source code for mmaction.datasets.rawframe_dataset

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Callable, List, Optional, Union

from mmengine.fileio import exists, list_from_file

from mmaction.registry import DATASETS
from mmaction.utils import ConfigType
from .base import BaseActionDataset


[docs]@DATASETS.register_module() class RawframeDataset(BaseActionDataset): """Rawframe dataset for action recognition. The dataset loads raw frames and apply specified transforms to return a dict containing the frame tensors and other information. The ann_file is a text file with multiple lines, and each line indicates the directory to frames of a video, total frames of the video and the label of a video, which are split with a whitespace. Example of a annotation file: .. code-block:: txt some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 some/directory-4 234 2 some/directory-5 295 3 some/directory-6 121 3 Example of a multi-class annotation file: .. code-block:: txt some/directory-1 163 1 3 5 some/directory-2 122 1 2 some/directory-3 258 2 some/directory-4 234 2 4 6 8 some/directory-5 295 3 some/directory-6 121 3 Example of a with_offset annotation file (clips from long videos), each line indicates the directory to frames of a video, the index of the start frame, total frames of the video clip and the label of a video clip, which are split with a whitespace. .. code-block:: txt some/directory-1 12 163 3 some/directory-2 213 122 4 some/directory-3 100 258 5 some/directory-4 98 234 2 some/directory-5 0 295 3 some/directory-6 50 121 3 Args: ann_file (str): Path to the annotation file. pipeline (List[Union[dict, ConfigDict, Callable]]): A sequence of data transforms. data_prefix (dict or ConfigDict): Path to a directory where video frames are held. Defaults to ``dict(img='')``. filename_tmpl (str): Template for each filename. Defaults to ``img_{:05}.jpg``. with_offset (bool): Determines whether the offset information is in ann_file. Defaults to False. multi_class (bool): Determines whether it is a multi-class recognition dataset. Defaults to False. num_classes (int, optional): Number of classes in the dataset. Defaults to None. start_index (int): Specify a start index for frames in consideration of different filename format. However, when taking frames as input, it should be set to 1, since raw frames count from 1. Defaults to 1. modality (str): Modality of data. Support ``RGB``, ``Flow``. Defaults to ``RGB``. test_mode (bool): Store True when building test or validation dataset. Defaults to False. """ def __init__(self, ann_file: str, pipeline: List[Union[ConfigType, Callable]], data_prefix: ConfigType = dict(img=''), filename_tmpl: str = 'img_{:05}.jpg', with_offset: bool = False, multi_class: bool = False, num_classes: Optional[int] = None, start_index: int = 1, modality: str = 'RGB', test_mode: bool = False, **kwargs) -> None: self.filename_tmpl = filename_tmpl self.with_offset = with_offset super().__init__( ann_file, pipeline=pipeline, data_prefix=data_prefix, test_mode=test_mode, multi_class=multi_class, num_classes=num_classes, start_index=start_index, modality=modality, **kwargs)
[docs] def load_data_list(self) -> List[dict]: """Load annotation file to get video information.""" exists(self.ann_file) data_list = [] fin = list_from_file(self.ann_file) for line in fin: line_split = line.strip().split() video_info = {} idx = 0 # idx for frame_dir frame_dir = line_split[idx] if self.data_prefix['img'] is not None: frame_dir = osp.join(self.data_prefix['img'], frame_dir) video_info['frame_dir'] = frame_dir idx += 1 if self.with_offset: # idx for offset and total_frames video_info['offset'] = int(line_split[idx]) video_info['total_frames'] = int(line_split[idx + 1]) idx += 2 else: # idx for total_frames video_info['total_frames'] = int(line_split[idx]) idx += 1 # idx for label[s] label = [int(x) for x in line_split[idx:]] # add fake label for inference datalist without label if not label: label = [-1] if self.multi_class: assert self.num_classes is not None video_info['label'] = label else: assert len(label) == 1 video_info['label'] = label[0] data_list.append(video_info) return data_list
[docs] def get_data_info(self, idx: int) -> dict: """Get annotation by index.""" data_info = super().get_data_info(idx) data_info['filename_tmpl'] = self.filename_tmpl return data_info