Source code for mmaction.datasets.repeat_aug_dataset
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Any, Callable, List, Optional, Sequence, Union
import numpy as np
from mmengine.dataset import COLLATE_FUNCTIONS, pseudo_collate
from mmaction.registry import DATASETS
from mmaction.utils import ConfigType
from .video_dataset import VideoDataset
def get_type(transform: Union[dict, Callable]) -> str:
    """get the type of the transform."""
    if isinstance(transform, dict) and 'type' in transform:
        return transform['type']
    elif callable(transform):
        return transform.__repr__().split('(')[0]
    else:
        raise TypeError
[docs]@DATASETS.register_module()
class RepeatAugDataset(VideoDataset):
    """Video dataset for action recognition use repeat augment.
    https://arxiv.org/pdf/1901.09335.pdf.
    The dataset loads raw videos and apply specified transforms to return a
    dict containing the frame tensors and other information.
    The ann_file is a text file with multiple lines, and each line indicates
    a sample video with the filepath and label, which are split with a
    whitespace. Example of a annotation file:
    .. code-block:: txt
        some/path/000.mp4 1
        some/path/001.mp4 1
        some/path/002.mp4 2
        some/path/003.mp4 2
        some/path/004.mp4 3
        some/path/005.mp4 3
    Args:
        ann_file (str): Path to the annotation file.
        pipeline (List[Union[dict, ConfigDict, Callable]]): A sequence of
            data transforms.
        data_prefix (dict or ConfigDict): Path to a directory where videos
            are held. Defaults to ``dict(video='')``.
        num_repeats (int): Number of repeat time of one video in a batch.
            Defaults to 4.
        sample_once (bool): Determines whether use same frame index for
            repeat samples. Defaults to False.
        multi_class (bool): Determines whether the dataset is a multi-class
            dataset. Defaults to False.
        num_classes (int, optional): Number of classes of the dataset, used in
            multi-class datasets. Defaults to None.
        start_index (int): Specify a start index for frames in consideration of
            different filename format. However, when taking videos as input,
            it should be set to 0, since frames loaded from videos count
            from 0. Defaults to 0.
        modality (str): Modality of data. Support ``RGB``, ``Flow``.
            Defaults to ``RGB``.
        test_mode (bool): Store True when building test or validation dataset.
            Defaults to False.
    """
    def __init__(self,
                 ann_file: str,
                 pipeline: List[Union[dict, Callable]],
                 data_prefix: ConfigType = dict(video=''),
                 num_repeats: int = 4,
                 sample_once: bool = False,
                 multi_class: bool = False,
                 num_classes: Optional[int] = None,
                 start_index: int = 0,
                 modality: str = 'RGB',
                 **kwargs) -> None:
        use_decord = get_type(pipeline[0]) == 'DecordInit' and \
               get_type(pipeline[2]) == 'DecordDecode'
        assert use_decord, (
            'RepeatAugDataset requires decord as the video '
            'loading backend, will support more backends in the '
            'future')
        super().__init__(
            ann_file,
            pipeline=pipeline,
            data_prefix=data_prefix,
            multi_class=multi_class,
            num_classes=num_classes,
            start_index=start_index,
            modality=modality,
            test_mode=False,
            **kwargs)
        self.num_repeats = num_repeats
        self.sample_once = sample_once
[docs]    def prepare_data(self, idx) -> List[dict]:
        """Get data processed by ``self.pipeline``.
        Reduce the video loading and decompressing.
        Args:
            idx (int): The index of ``data_info``.
        Returns:
            List[dict]: A list of length num_repeats.
        """
        transforms = self.pipeline.transforms
        data_info = self.get_data_info(idx)
        data_info = transforms[0](data_info)  # DecordInit
        frame_inds_list, frame_inds_length = [], [0]
        fake_data_info = dict(
            total_frames=data_info['total_frames'],
            start_index=data_info['start_index'])
        if not self.sample_once:
            for repeat in range(self.num_repeats):
                data_info_ = transforms[1](fake_data_info)  # SampleFrames
                frame_inds = data_info_['frame_inds']
                frame_inds_list.append(frame_inds.reshape(-1))
                frame_inds_length.append(frame_inds.size +
                                         frame_inds_length[-1])
        else:
            data_info_ = transforms[1](fake_data_info)  # SampleFrames
            frame_inds = data_info_['frame_inds']
            for repeat in range(self.num_repeats):
                frame_inds_list.append(frame_inds.reshape(-1))
                frame_inds_length.append(frame_inds.size +
                                         frame_inds_length[-1])
        for key in data_info_:
            data_info[key] = data_info_[key]
        data_info['frame_inds'] = np.concatenate(frame_inds_list)
        data_info = transforms[2](data_info)  # DecordDecode
        imgs = data_info.pop('imgs')
        data_info_list = []
        for repeat in range(self.num_repeats):
            data_info_ = deepcopy(data_info)
            start = frame_inds_length[repeat]
            end = frame_inds_length[repeat + 1]
            data_info_['imgs'] = imgs[start:end]
            for transform in transforms[3:]:
                data_info_ = transform(data_info_)
            data_info_list.append(data_info_)
        del imgs
        return data_info_list
@COLLATE_FUNCTIONS.register_module()
def repeat_pseudo_collate(data_batch: Sequence) -> Any:
    data_batch = [i for j in data_batch for i in j]
    return pseudo_collate(data_batch)