Shortcuts

Source code for mmaction.datasets.repeat_aug_dataset

# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Any, Callable, List, Optional, Sequence, Union

import numpy as np
from mmengine.dataset import COLLATE_FUNCTIONS, pseudo_collate

from mmaction.registry import DATASETS
from mmaction.utils import ConfigType
from .video_dataset import VideoDataset


def get_type(transform: Union[dict, Callable]) -> str:
    """get the type of the transform."""
    if isinstance(transform, dict) and 'type' in transform:
        return transform['type']
    elif callable(transform):
        return transform.__repr__().split('(')[0]
    else:
        raise TypeError


[docs]@DATASETS.register_module() class RepeatAugDataset(VideoDataset): """Video dataset for action recognition use repeat augment. https://arxiv.org/pdf/1901.09335.pdf. The dataset loads raw videos and apply specified transforms to return a dict containing the frame tensors and other information. The ann_file is a text file with multiple lines, and each line indicates a sample video with the filepath and label, which are split with a whitespace. Example of a annotation file: .. code-block:: txt some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 some/path/003.mp4 2 some/path/004.mp4 3 some/path/005.mp4 3 Args: ann_file (str): Path to the annotation file. pipeline (List[Union[dict, ConfigDict, Callable]]): A sequence of data transforms. data_prefix (dict or ConfigDict): Path to a directory where videos are held. Defaults to ``dict(video='')``. num_repeats (int): Number of repeat time of one video in a batch. Defaults to 4. sample_once (bool): Determines whether use same frame index for repeat samples. Defaults to False. multi_class (bool): Determines whether the dataset is a multi-class dataset. Defaults to False. num_classes (int, optional): Number of classes of the dataset, used in multi-class datasets. Defaults to None. start_index (int): Specify a start index for frames in consideration of different filename format. However, when taking videos as input, it should be set to 0, since frames loaded from videos count from 0. Defaults to 0. modality (str): Modality of data. Support ``RGB``, ``Flow``. Defaults to ``RGB``. test_mode (bool): Store True when building test or validation dataset. Defaults to False. """ def __init__(self, ann_file: str, pipeline: List[Union[dict, Callable]], data_prefix: ConfigType = dict(video=''), num_repeats: int = 4, sample_once: bool = False, multi_class: bool = False, num_classes: Optional[int] = None, start_index: int = 0, modality: str = 'RGB', **kwargs) -> None: use_decord = get_type(pipeline[0]) == 'DecordInit' and \ get_type(pipeline[2]) == 'DecordDecode' assert use_decord, ( 'RepeatAugDataset requires decord as the video ' 'loading backend, will support more backends in the ' 'future') super().__init__( ann_file, pipeline=pipeline, data_prefix=data_prefix, multi_class=multi_class, num_classes=num_classes, start_index=start_index, modality=modality, test_mode=False, **kwargs) self.num_repeats = num_repeats self.sample_once = sample_once
[docs] def prepare_data(self, idx) -> List[dict]: """Get data processed by ``self.pipeline``. Reduce the video loading and decompressing. Args: idx (int): The index of ``data_info``. Returns: List[dict]: A list of length num_repeats. """ transforms = self.pipeline.transforms data_info = self.get_data_info(idx) data_info = transforms[0](data_info) # DecordInit frame_inds_list, frame_inds_length = [], [0] fake_data_info = dict( total_frames=data_info['total_frames'], start_index=data_info['start_index']) if not self.sample_once: for repeat in range(self.num_repeats): data_info_ = transforms[1](fake_data_info) # SampleFrames frame_inds = data_info_['frame_inds'] frame_inds_list.append(frame_inds.reshape(-1)) frame_inds_length.append(frame_inds.size + frame_inds_length[-1]) else: data_info_ = transforms[1](fake_data_info) # SampleFrames frame_inds = data_info_['frame_inds'] for repeat in range(self.num_repeats): frame_inds_list.append(frame_inds.reshape(-1)) frame_inds_length.append(frame_inds.size + frame_inds_length[-1]) for key in data_info_: data_info[key] = data_info_[key] data_info['frame_inds'] = np.concatenate(frame_inds_list) data_info = transforms[2](data_info) # DecordDecode imgs = data_info.pop('imgs') data_info_list = [] for repeat in range(self.num_repeats): data_info_ = deepcopy(data_info) start = frame_inds_length[repeat] end = frame_inds_length[repeat + 1] data_info_['imgs'] = imgs[start:end] for transform in transforms[3:]: data_info_ = transform(data_info_) data_info_list.append(data_info_) del imgs return data_info_list
@COLLATE_FUNCTIONS.register_module() def repeat_pseudo_collate(data_batch: Sequence) -> Any: data_batch = [i for j in data_batch for i in j] return pseudo_collate(data_batch)