Shortcuts

Source code for mmaction.evaluation.metrics.multimodal_metric

# Copyright (c) OpenMMLab. All rights reserved.
# Copied from mmpretrain
# Partly adopted from https://github.com/GT-Vision-Lab/VQA
# Copyright (c) 2014, Aishwarya Agrawal
from typing import List, Optional, Sequence, Union

import mmengine
import numpy as np
import torch
import torch.nn.functional as F
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from mmengine.utils import is_seq_of

from mmaction.registry import METRICS
from mmaction.structures.action_data_sample import format_label
from .acc_metric import to_tensor


def _process_punctuation(inText):
    import re
    outText = inText
    punct = [
        ';', r'/', '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-',
        '>', '<', '@', '`', ',', '?', '!'
    ]
    commaStrip = re.compile('(\d)(,)(\d)')  # noqa: W605
    periodStrip = re.compile('(?!<=\d)(\.)(?!\d)')  # noqa: W605
    for p in punct:
        if (p + ' ' in inText or ' ' + p in inText) or (re.search(
                commaStrip, inText) is not None):
            outText = outText.replace(p, '')
        else:
            outText = outText.replace(p, ' ')
    outText = periodStrip.sub('', outText, re.UNICODE)
    return outText


def _process_digit_article(inText):
    outText = []
    tempText = inText.lower().split()
    articles = ['a', 'an', 'the']
    manualMap = {
        'none': '0',
        'zero': '0',
        'one': '1',
        'two': '2',
        'three': '3',
        'four': '4',
        'five': '5',
        'six': '6',
        'seven': '7',
        'eight': '8',
        'nine': '9',
        'ten': '10',
    }
    contractions = {
        'aint': "ain't",
        'arent': "aren't",
        'cant': "can't",
        'couldve': "could've",
        'couldnt': "couldn't",
        "couldn'tve": "couldn't've",
        "couldnt've": "couldn't've",
        'didnt': "didn't",
        'doesnt': "doesn't",
        'dont': "don't",
        'hadnt': "hadn't",
        "hadnt've": "hadn't've",
        "hadn'tve": "hadn't've",
        'hasnt': "hasn't",
        'havent': "haven't",
        'hed': "he'd",
        "hed've": "he'd've",
        "he'dve": "he'd've",
        'hes': "he's",
        'howd': "how'd",
        'howll': "how'll",
        'hows': "how's",
        "Id've": "I'd've",
        "I'dve": "I'd've",
        'Im': "I'm",
        'Ive': "I've",
        'isnt': "isn't",
        'itd': "it'd",
        "itd've": "it'd've",
        "it'dve": "it'd've",
        'itll': "it'll",
        "let's": "let's",
        'maam': "ma'am",
        'mightnt': "mightn't",
        "mightnt've": "mightn't've",
        "mightn'tve": "mightn't've",
        'mightve': "might've",
        'mustnt': "mustn't",
        'mustve': "must've",
        'neednt': "needn't",
        'notve': "not've",
        'oclock': "o'clock",
        'oughtnt': "oughtn't",
        "ow's'at": "'ow's'at",
        "'ows'at": "'ow's'at",
        "'ow'sat": "'ow's'at",
        'shant': "shan't",
        "shed've": "she'd've",
        "she'dve": "she'd've",
        "she's": "she's",
        'shouldve': "should've",
        'shouldnt': "shouldn't",
        "shouldnt've": "shouldn't've",
        "shouldn'tve": "shouldn't've",
        "somebody'd": 'somebodyd',
        "somebodyd've": "somebody'd've",
        "somebody'dve": "somebody'd've",
        'somebodyll': "somebody'll",
        'somebodys': "somebody's",
        'someoned': "someone'd",
        "someoned've": "someone'd've",
        "someone'dve": "someone'd've",
        'someonell': "someone'll",
        'someones': "someone's",
        'somethingd': "something'd",
        "somethingd've": "something'd've",
        "something'dve": "something'd've",
        'somethingll': "something'll",
        'thats': "that's",
        'thered': "there'd",
        "thered've": "there'd've",
        "there'dve": "there'd've",
        'therere': "there're",
        'theres': "there's",
        'theyd': "they'd",
        "theyd've": "they'd've",
        "they'dve": "they'd've",
        'theyll': "they'll",
        'theyre': "they're",
        'theyve': "they've",
        'twas': "'twas",
        'wasnt': "wasn't",
        "wed've": "we'd've",
        "we'dve": "we'd've",
        'weve': "we've",
        'werent': "weren't",
        'whatll': "what'll",
        'whatre': "what're",
        'whats': "what's",
        'whatve': "what've",
        'whens': "when's",
        'whered': "where'd",
        'wheres': "where's",
        'whereve': "where've",
        'whod': "who'd",
        "whod've": "who'd've",
        "who'dve": "who'd've",
        'wholl': "who'll",
        'whos': "who's",
        'whove': "who've",
        'whyll': "why'll",
        'whyre': "why're",
        'whys': "why's",
        'wont': "won't",
        'wouldve': "would've",
        'wouldnt': "wouldn't",
        "wouldnt've": "wouldn't've",
        "wouldn'tve": "wouldn't've",
        'yall': "y'all",
        "yall'll": "y'all'll",
        "y'allll": "y'all'll",
        "yall'd've": "y'all'd've",
        "y'alld've": "y'all'd've",
        "y'all'dve": "y'all'd've",
        'youd': "you'd",
        "youd've": "you'd've",
        "you'dve": "you'd've",
        'youll': "you'll",
        'youre': "you're",
        'youve': "you've",
    }
    for word in tempText:
        word = manualMap.setdefault(word, word)
        if word not in articles:
            outText.append(word)
    for wordId, word in enumerate(outText):
        if word in contractions:
            outText[wordId] = contractions[word]
    outText = ' '.join(outText)
    return outText


[docs]@METRICS.register_module() class VQAAcc(BaseMetric): '''VQA Acc metric. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Should be modified according to the `retrieval_type` for unambiguous results. Defaults to TR. ''' default_prefix = 'VQA' def __init__(self, full_score_weight: float = 0.3, collect_device: str = 'cpu', prefix: Optional[str] = None): super().__init__(collect_device=collect_device, prefix=prefix) self.full_score_weight = full_score_weight
[docs] def process(self, data_batch, data_samples): """Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for sample in data_samples: gt_answer = sample.get('gt_answer') gt_answer_weight = sample.get('gt_answer_weight') if isinstance(gt_answer, str): gt_answer = [gt_answer] if gt_answer_weight is None: gt_answer_weight = [1. / (len(gt_answer))] * len(gt_answer) result = { 'pred_answer': sample.get('pred_answer'), 'gt_answer': gt_answer, 'gt_answer_weight': gt_answer_weight, } self.results.append(result)
[docs] def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ acc = [] for result in results: pred_answer = self._process_answer(result['pred_answer']) gt_answer = [ self._process_answer(answer) for answer in result['gt_answer'] ] answer_weight = result['gt_answer_weight'] weight_sum = 0 for i, gt in enumerate(gt_answer): if gt == pred_answer: weight_sum += answer_weight[i] vqa_acc = min(1.0, weight_sum / self.full_score_weight) acc.append(vqa_acc) accuracy = sum(acc) / len(acc) * 100 metrics = {'acc': accuracy} return metrics
def _process_answer(self, answer): answer = answer.replace('\n', ' ') answer = answer.replace('\t', ' ') answer = answer.strip() answer = _process_punctuation(answer) answer = _process_digit_article(answer) return answer
[docs]@METRICS.register_module() class ReportVQA(BaseMetric): """Dump VQA result to the standard json format for VQA evaluation. Args: file_path (str): The file path to save the result file. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Should be modified according to the `retrieval_type` for unambiguous results. Defaults to TR. """ default_prefix = 'VQA' def __init__(self, file_path: str, collect_device: str = 'cpu', prefix: Optional[str] = None): super().__init__(collect_device=collect_device, prefix=prefix) if not file_path.endswith('.json'): raise ValueError('The output file must be a json file.') self.file_path = file_path
[docs] def process(self, data_batch, data_samples) -> None: """transfer tensors in predictions to CPU.""" for sample in data_samples: question_id = sample['question_id'] pred_answer = sample['pred_answer'] result = { 'question_id': int(question_id), 'answer': pred_answer, } self.results.append(result)
[docs] def compute_metrics(self, results: List): """Dump the result to json file.""" mmengine.dump(results, self.file_path) logger = MMLogger.get_current_instance() logger.info(f'Results has been saved to {self.file_path}.') return {}
[docs]@METRICS.register_module() class VQAMCACC(BaseMetric): '''VQA multiple choice Acc metric. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Should be modified according to the `retrieval_type` for unambiguous results. Defaults to TR. ''' default_prefix = 'VQAMC' def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None): super().__init__(collect_device=collect_device, prefix=prefix)
[docs] def process(self, data_batch, data_samples): """Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for sample in data_samples: # gt_labels in datasample is a LabelData label = sample['gt_label'].item() result = { 'pred_label': sample.get('pred_label'), 'gt_label': label, } self.results.append(result)
[docs] def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ preds = np.array([x['pred_label'] for x in results]) labels = np.array([x['gt_label'] for x in results]) accuracy = np.sum(preds == labels) / len(preds) * 100 metrics = {'acc': accuracy} return metrics
[docs]@METRICS.register_module() class RetrievalRecall(BaseMetric): r"""Recall evaluation metric for image retrieval. Args: topk (int | Sequence[int]): If the ground truth label matches one of the best **k** predictions, the sample will be regard as a positive prediction. If the parameter is a tuple, all of top-k recall will be calculated and outputted together. Defaults to 1. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. """ default_prefix: Optional[str] = 'retrieval' def __init__(self, topk: Union[int, Sequence[int]], collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: topk = (topk, ) if isinstance(topk, int) else topk for k in topk: if k <= 0: raise ValueError('`topk` must be a ingter larger than 0 ' 'or seq of ingter larger than 0.') self.topk = topk super().__init__(collect_device=collect_device, prefix=prefix)
[docs] def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]): """Process one batch of data and predictions. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model. """ for data_sample in data_samples: pred_score = data_sample['pred_score'].cpu() gt_label = format_label(data_sample['gt_label']) if 'gt_score' in data_sample: target = data_sample.get('gt_score').clone() else: num_classes = pred_score.size()[-1] target = F.one_hot(gt_label, num_classes) # Because the retrieval output logit vector will be much larger # compared to the normal classification, to save resources, the # evaluation results are computed each batch here and then reduce # all results at the end. result = RetrievalRecall.calculate( pred_score.unsqueeze(0), target.unsqueeze(0), topk=self.topk) self.results.append(result)
[docs] def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ result_metrics = dict() for i, k in enumerate(self.topk): recall_at_k = sum([r[i].item() for r in results]) / len(results) result_metrics[f'Recall@{k}'] = recall_at_k return result_metrics
[docs] @staticmethod def calculate(pred: Union[np.ndarray, torch.Tensor], target: Union[np.ndarray, torch.Tensor], topk: Union[int, Sequence[int]], pred_indices: (bool) = False, target_indices: (bool) = False) -> float: """Calculate the average recall. Args: pred (torch.Tensor | np.ndarray | Sequence): The prediction results. A :obj:`torch.Tensor` or :obj:`np.ndarray` with shape ``(N, M)`` or a sequence of index/onehot format labels. target (torch.Tensor | np.ndarray | Sequence): The prediction results. A :obj:`torch.Tensor` or :obj:`np.ndarray` with shape ``(N, M)`` or a sequence of index/onehot format labels. topk (int, Sequence[int]): Predictions with the k-th highest scores are considered as positive. pred_indices (bool): Whether the ``pred`` is a sequence of category index labels. Defaults to False. target_indices (bool): Whether the ``target`` is a sequence of category index labels. Defaults to False. Returns: List[float]: the average recalls. """ topk = (topk, ) if isinstance(topk, int) else topk for k in topk: if k <= 0: raise ValueError('`topk` must be a ingter larger than 0 ' 'or seq of ingter larger than 0.') max_keep = max(topk) pred = _format_pred(pred, max_keep, pred_indices) target = _format_target(target, target_indices) assert len(pred) == len(target), ( f'Length of `pred`({len(pred)}) and `target` ({len(target)}) ' f'must be the same.') num_samples = len(pred) results = [] for k in topk: recalls = torch.zeros(num_samples) for i, (sample_pred, sample_target) in enumerate(zip(pred, target)): sample_pred = np.array(to_tensor(sample_pred).cpu()) sample_target = np.array(to_tensor(sample_target).cpu()) recalls[i] = int(np.in1d(sample_pred[:k], sample_target).max()) results.append(recalls.mean() * 100) return results
def _format_pred(label, topk=None, is_indices=False): """format various label to List[indices].""" if is_indices: assert isinstance(label, Sequence), \ '`pred` must be Sequence of indices when' \ f' `pred_indices` set to True, but get {type(label)}' for i, sample_pred in enumerate(label): assert is_seq_of(sample_pred, int) or isinstance( sample_pred, (np.ndarray, torch.Tensor)), \ '`pred` should be Sequence of indices when `pred_indices`' \ f'set to True. but pred[{i}] is {sample_pred}' if topk: label[i] = sample_pred[:min(topk, len(sample_pred))] return label if isinstance(label, np.ndarray): label = torch.from_numpy(label) elif not isinstance(label, torch.Tensor): raise TypeError(f'The pred must be type of torch.tensor, ' f'np.ndarray or Sequence but get {type(label)}.') topk = topk if topk else label.size()[-1] _, indices = label.topk(topk) return indices def _format_target(label, is_indices=False): """format various label to List[indices].""" if is_indices: assert isinstance(label, Sequence), \ '`target` must be Sequence of indices when' \ f' `target_indices` set to True, but get {type(label)}' for i, sample_gt in enumerate(label): assert is_seq_of(sample_gt, int) or isinstance( sample_gt, (np.ndarray, torch.Tensor)), \ '`target` should be Sequence of indices when ' \ f'`target_indices` set to True. but target[{i}] is {sample_gt}' return label if isinstance(label, np.ndarray): label = torch.from_numpy(label) elif isinstance(label, Sequence) and not mmengine.is_str(label): label = torch.tensor(label) elif not isinstance(label, torch.Tensor): raise TypeError(f'The pred must be type of torch.tensor, ' f'np.ndarray or Sequence but get {type(label)}.') indices = [sample_gt.nonzero().squeeze(-1) for sample_gt in label] return indices