Source code for mmaction.models.backbones.c3d
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.logging import MMLogger
from mmengine.model.weight_init import constant_init, kaiming_init, normal_init
from mmengine.runner import load_checkpoint
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmaction.registry import MODELS
[docs]@MODELS.register_module()
class C3D(nn.Module):
"""C3D backbone.
Args:
pretrained (str | None): Name of pretrained model.
style (str): ``pytorch`` or ``caffe``. If set to "pytorch", the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Default: 'pytorch'.
conv_cfg (dict | None): Config dict for convolution layer.
If set to None, it uses ``dict(type='Conv3d')`` to construct
layers. Default: None.
norm_cfg (dict | None): Config for norm layers. required keys are
``type``, Default: None.
act_cfg (dict | None): Config dict for activation layer. If set to
None, it uses ``dict(type='ReLU')`` to construct layers.
Default: None.
out_dim (int): The dimension of last layer feature (after flatten).
Depends on the input shape. Default: 8192.
dropout_ratio (float): Probability of dropout layer. Default: 0.5.
init_std (float): Std value for Initiation of fc layers. Default: 0.01.
"""
def __init__(self,
pretrained=None,
style='pytorch',
conv_cfg=None,
norm_cfg=None,
act_cfg=None,
out_dim=8192,
dropout_ratio=0.5,
init_std=0.005):
super().__init__()
if conv_cfg is None:
conv_cfg = dict(type='Conv3d')
if act_cfg is None:
act_cfg = dict(type='ReLU')
self.pretrained = pretrained
self.style = style
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.dropout_ratio = dropout_ratio
self.init_std = init_std
c3d_conv_param = dict(
kernel_size=(3, 3, 3),
padding=(1, 1, 1),
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.conv1a = ConvModule(3, 64, **c3d_conv_param)
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.conv2a = ConvModule(64, 128, **c3d_conv_param)
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv3a = ConvModule(128, 256, **c3d_conv_param)
self.conv3b = ConvModule(256, 256, **c3d_conv_param)
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv4a = ConvModule(256, 512, **c3d_conv_param)
self.conv4b = ConvModule(512, 512, **c3d_conv_param)
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = ConvModule(512, 512, **c3d_conv_param)
self.conv5b = ConvModule(512, 512, **c3d_conv_param)
self.pool5 = nn.MaxPool3d(
kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1))
self.fc6 = nn.Linear(out_dim, 4096)
self.fc7 = nn.Linear(4096, 4096)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=self.dropout_ratio)
[docs] def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv3d):
kaiming_init(m)
elif isinstance(m, nn.Linear):
normal_init(m, std=self.init_std)
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
[docs] def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
the size of x is (num_batches, 3, 16, 112, 112).
Returns:
torch.Tensor: The feature of the input
samples extracted by the backbone.
"""
x = self.conv1a(x)
x = self.pool1(x)
x = self.conv2a(x)
x = self.pool2(x)
x = self.conv3a(x)
x = self.conv3b(x)
x = self.pool3(x)
x = self.conv4a(x)
x = self.conv4b(x)
x = self.pool4(x)
x = self.conv5a(x)
x = self.conv5b(x)
x = self.pool5(x)
x = x.flatten(start_dim=1)
x = self.relu(self.fc6(x))
x = self.dropout(x)
x = self.relu(self.fc7(x))
return x