Shortcuts

Source code for mmaction.models.backbones.mobilenet_v2

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Union

import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm

from mmaction.registry import MODELS


def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
    """Make divisible function.

    This function rounds the channel number down to the nearest value that can
    be divisible by the divisor.
    Args:
        value (int): The original channel number.
        divisor (int): The divisor to fully divide the channel number.
        min_value (int, optional): The minimum value of the output channel.
            Defaults to None, means that the minimum value equal to the
            divisor.
        min_ratio (float, optional): The minimum ratio of the rounded channel
            number to the original channel number. Defaults to 0.9.
    Returns:
        int: The modified output channel number
    """

    if min_value is None:
        min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than (1-min_ratio).
    if new_value < min_ratio * value:
        new_value += divisor
    return new_value


class InvertedResidual(nn.Module):
    """InvertedResidual block for MobileNetV2.

    Args:
        in_channels (int): The input channels of the InvertedResidual block.
        out_channels (int): The output channels of the InvertedResidual block.
        stride (int): Stride of the middle (first) 3x3 convolution.
        expand_ratio (int): adjusts number of channels of the hidden layer
            in InvertedResidual by this amount.
        conv_cfg (dict): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='ReLU6').
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
    Returns:
        Tensor: The output tensor
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride,
                 expand_ratio,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU6'),
                 with_cp=False):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2], f'stride must in [1, 2]. ' \
            f'But received {stride}.'
        self.with_cp = with_cp
        self.use_res_connect = self.stride == 1 and in_channels == out_channels
        hidden_dim = int(round(in_channels * expand_ratio))

        layers = []
        if expand_ratio != 1:
            layers.append(
                ConvModule(
                    in_channels=in_channels,
                    out_channels=hidden_dim,
                    kernel_size=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
        layers.extend([
            ConvModule(
                in_channels=hidden_dim,
                out_channels=hidden_dim,
                kernel_size=3,
                stride=stride,
                padding=1,
                groups=hidden_dim,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg),
            ConvModule(
                in_channels=hidden_dim,
                out_channels=out_channels,
                kernel_size=1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=None)
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        """Defines the computation performed at every call.

        Args:
            x (Tensor): The input data.

        Returns:
            Tensor: The output of the module.
        """

        def _inner_forward(x):
            if self.use_res_connect:
                return x + self.conv(x)

            return self.conv(x)

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        return out


[docs]@MODELS.register_module() class MobileNetV2(BaseModule): """MobileNetV2 backbone. Args: pretrained (str | None): Name of pretrained model. Defaults to None. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0. out_indices (None or Sequence[int]): Output from which stages. Defaults to (7, ). frozen_stages (int): Stages to be frozen (all param fixed). Note that the last stage in ``MobileNetV2`` is ``conv2``. Defaults to -1, which means not freezing any parameters. conv_cfg (dict): Config dict for convolution layer. Defaults to None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Defaults to dict(type='BN'). act_cfg (dict): Config dict for activation layer. Defaults to dict(type='ReLU6'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False. init_cfg (dict or list[dict]): Initialization config dict. Defaults to ``[ dict(type='Kaiming', layer='Conv2d',), dict(type='Constant', layer=['GroupNorm', '_BatchNorm'], val=1.) ]``. """ # Parameters to build layers. 4 parameters are needed to construct a # layer, from left to right: expand_ratio, channel, num_blocks, stride. arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]] def __init__(self, pretrained=None, widen_factor=1., out_indices=(7, ), frozen_stages=-1, conv_cfg=dict(type='Conv'), norm_cfg=dict(type='BN2d', requires_grad=True), act_cfg=dict(type='ReLU6', inplace=True), norm_eval=False, with_cp=False, init_cfg: Optional[Union[Dict, List[Dict]]] = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', layer=['GroupNorm', '_BatchNorm'], val=1.) ]): if pretrained is not None: init_cfg = dict(type='Pretrained', checkpoint=pretrained) super().__init__(init_cfg=init_cfg) self.pretrained = pretrained self.widen_factor = widen_factor self.out_indices = out_indices for index in out_indices: if index not in range(0, 8): raise ValueError('the item in out_indices must in ' f'range(0, 8). But received {index}') if frozen_stages not in range(-1, 9): raise ValueError('frozen_stages must be in range(-1, 9). ' f'But received {frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.in_channels = make_divisible(32 * widen_factor, 8) self.conv1 = ConvModule( in_channels=3, out_channels=self.in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.layers = [] for i, layer_cfg in enumerate(self.arch_settings): expand_ratio, channel, num_blocks, stride = layer_cfg out_channels = make_divisible(channel * widen_factor, 8) inverted_res_layer = self.make_layer( out_channels=out_channels, num_blocks=num_blocks, stride=stride, expand_ratio=expand_ratio) layer_name = f'layer{i + 1}' self.add_module(layer_name, inverted_res_layer) self.layers.append(layer_name) if widen_factor > 1.0: self.out_channel = int(1280 * widen_factor) else: self.out_channel = 1280 layer = ConvModule( in_channels=self.in_channels, out_channels=self.out_channel, kernel_size=1, stride=1, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.add_module('conv2', layer) self.layers.append('conv2')
[docs] def make_layer(self, out_channels, num_blocks, stride, expand_ratio): """Stack InvertedResidual blocks to build a layer for MobileNetV2. Args: out_channels (int): out_channels of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Defaults to 1 expand_ratio (int): Expand the number of channels of the hidden layer in InvertedResidual by this ratio. Defaults to 6. """ layers = [] for i in range(num_blocks): if i >= 1: stride = 1 layers.append( InvertedResidual( self.in_channels, out_channels, stride, expand_ratio=expand_ratio, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, with_cp=self.with_cp)) self.in_channels = out_channels return nn.Sequential(*layers)
[docs] def forward(self, x): """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor or Tuple[Tensor]: The feature of the input samples extracted by the backbone. """ x = self.conv1(x) outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) if len(outs) == 1: return outs[0] return tuple(outs)
def _freeze_stages(self): """Prevent all the parameters from being optimized before ``self.frozen_stages``.""" if self.frozen_stages >= 0: self.conv1.eval() for param in self.conv1.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): layer_name = self.layers[i - 1] layer = getattr(self, layer_name) layer.eval() for param in layer.parameters(): param.requires_grad = False
[docs] def train(self, mode=True): """Set the optimization status when training.""" super(MobileNetV2, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()