Source code for mmaction.models.backbones.resnet3d_csn
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmaction.registry import MODELS
from .resnet3d import Bottleneck3d, ResNet3d
class CSNBottleneck3d(Bottleneck3d):
"""Channel-Separated Bottleneck Block.
This module is proposed in
"Video Classification with Channel-Separated Convolutional Networks"
Link: https://arxiv.org/pdf/1711.11248.pdf
Args:
inplanes (int): Number of channels for the input in first conv3d layer.
planes (int): Number of channels produced by some norm/conv3d layers.
bottleneck_mode (str): Determine which ways to factorize a 3D
bottleneck block using channel-separated convolutional networks.
If set to 'ip', it will replace the 3x3x3 conv2 layer with a
1x1x1 traditional convolution and a 3x3x3 depthwise
convolution, i.e., Interaction-preserved channel-separated
bottleneck block.
If set to 'ir', it will replace the 3x3x3 conv2 layer with a
3x3x3 depthwise convolution, which is derived from preserved
bottleneck block by removing the extra 1x1x1 convolution,
i.e., Interaction-reduced channel-separated bottleneck block.
Default: 'ir'.
args (position arguments): Position arguments for Bottleneck.
kwargs (dict, optional): Keyword arguments for Bottleneck.
"""
def __init__(self,
inplanes,
planes,
*args,
bottleneck_mode='ir',
**kwargs):
super(CSNBottleneck3d, self).__init__(inplanes, planes, *args,
**kwargs)
self.bottleneck_mode = bottleneck_mode
conv2 = []
if self.bottleneck_mode == 'ip':
conv2.append(
ConvModule(
planes,
planes,
1,
stride=1,
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=None))
conv2_kernel_size = self.conv2.conv.kernel_size
conv2_stride = self.conv2.conv.stride
conv2_padding = self.conv2.conv.padding
conv2_dilation = self.conv2.conv.dilation
conv2_bias = bool(self.conv2.conv.bias)
self.conv2 = ConvModule(
planes,
planes,
conv2_kernel_size,
stride=conv2_stride,
padding=conv2_padding,
dilation=conv2_dilation,
bias=conv2_bias,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
groups=planes)
conv2.append(self.conv2)
self.conv2 = nn.Sequential(*conv2)
[docs]@MODELS.register_module()
class ResNet3dCSN(ResNet3d):
"""ResNet backbone for CSN.
Args:
depth (int): Depth of ResNetCSN, from {18, 34, 50, 101, 152}.
pretrained (str | None): Name of pretrained model.
temporal_strides (tuple[int]):
Temporal strides of residual blocks of each stage.
Default: (1, 2, 2, 2).
conv1_kernel (tuple[int]): Kernel size of the first conv layer.
Default: (3, 7, 7).
conv1_stride_t (int): Temporal stride of the first conv layer.
Default: 1.
pool1_stride_t (int): Temporal stride of the first pooling layer.
Default: 1.
norm_cfg (dict): Config for norm layers. required keys are `type` and
`requires_grad`.
Default: dict(type='BN3d', requires_grad=True, eps=1e-3).
inflate_style (str): `3x1x1` or `3x3x3`. which determines the kernel
sizes and padding strides for conv1 and conv2 in each block.
Default: '3x3x3'.
bottleneck_mode (str): Determine which ways to factorize a 3D
bottleneck block using channel-separated convolutional networks.
If set to 'ip', it will replace the 3x3x3 conv2 layer with a
1x1x1 traditional convolution and a 3x3x3 depthwise
convolution, i.e., Interaction-preserved channel-separated
bottleneck block.
If set to 'ir', it will replace the 3x3x3 conv2 layer with a
3x3x3 depthwise convolution, which is derived from preserved
bottleneck block by removing the extra 1x1x1 convolution,
i.e., Interaction-reduced channel-separated bottleneck block.
Default: 'ip'.
kwargs (dict, optional): Key arguments for "make_res_layer".
"""
def __init__(self,
depth,
pretrained,
temporal_strides=(1, 2, 2, 2),
conv1_kernel=(3, 7, 7),
conv1_stride_t=1,
pool1_stride_t=1,
norm_cfg=dict(type='BN3d', requires_grad=True, eps=1e-3),
inflate_style='3x3x3',
bottleneck_mode='ir',
bn_frozen=False,
**kwargs):
self.arch_settings = {
# 18: (BasicBlock3d, (2, 2, 2, 2)),
# 34: (BasicBlock3d, (3, 4, 6, 3)),
50: (CSNBottleneck3d, (3, 4, 6, 3)),
101: (CSNBottleneck3d, (3, 4, 23, 3)),
152: (CSNBottleneck3d, (3, 8, 36, 3))
}
self.bn_frozen = bn_frozen
if bottleneck_mode not in ['ip', 'ir']:
raise ValueError(f'Bottleneck mode must be "ip" or "ir",'
f'but got {bottleneck_mode}.')
super(ResNet3dCSN, self).__init__(
depth,
pretrained,
temporal_strides=temporal_strides,
conv1_kernel=conv1_kernel,
conv1_stride_t=conv1_stride_t,
pool1_stride_t=pool1_stride_t,
norm_cfg=norm_cfg,
inflate_style=inflate_style,
bottleneck_mode=bottleneck_mode,
**kwargs)
[docs] def train(self, mode=True):
"""Set the optimization status when training."""
super(ResNet3d, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
if self.bn_frozen:
for param in m.parameters():
param.requires_grad = False