Source code for mmaction.models.common.conv2plus1d
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmengine.model.weight_init import constant_init, kaiming_init
from torch.nn.modules.utils import _triple
from mmaction.registry import MODELS
from mmaction.utils import ConfigType
[docs]@MODELS.register_module()
class Conv2plus1d(nn.Module):
"""(2+1)d Conv module for R(2+1)d backbone.
https://arxiv.org/pdf/1711.11248.pdf.
Args:
in_channels (int): Same as ``nn.Conv3d``.
out_channels (int): Same as ``nn.Conv3d``.
kernel_size (Union[int, Tuple[int]]): Same as ``nn.Conv3d``.
stride (Union[int, Tuple[int]]): Same as ``nn.Conv3d``. Defaults to 1.
padding (Union[int, Tuple[int]]): Same as ``nn.Conv3d``. Defaults to 0.
dilation (Union[int, Tuple[int]]): Same as ``nn.Conv3d``.
Defaults to 1.
groups (int): Same as ``nn.Conv3d``. Defaults to 1.
bias (Union[bool, str]): If specified as `auto`, it will be decided by
the norm_cfg. Bias will be set as True if norm_cfg is None,
otherwise False.
norm_cfg (Union[dict, ConfigDict]): Config for norm layers.
Defaults to ``dict(type='BN3d')``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int]],
stride: Union[int, Tuple[int]] = 1,
padding: Union[int, Tuple[int]] = 0,
dilation: Union[int, Tuple[int]] = 1,
groups: int = 1,
bias: Union[bool, str] = True,
norm_cfg: ConfigType = dict(type='BN3d')
) -> None:
super().__init__()
kernel_size = _triple(kernel_size)
stride = _triple(stride)
padding = _triple(padding)
assert len(kernel_size) == len(stride) == len(padding) == 3
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
self.norm_cfg = norm_cfg
self.output_padding = (0, 0, 0)
self.transposed = False
# The middle-plane is calculated according to:
# M_i = \floor{\frac{t * d^2 N_i-1 * N_i}
# {d^2 * N_i-1 + t * N_i}}
# where d, t are spatial and temporal kernel, and
# N_i, N_i-1 are planes
# and inplanes. https://arxiv.org/pdf/1711.11248.pdf
mid_channels = 3 * (
in_channels * out_channels * kernel_size[1] * kernel_size[2])
mid_channels /= (
in_channels * kernel_size[1] * kernel_size[2] + 3 * out_channels)
mid_channels = int(mid_channels)
self.conv_s = nn.Conv3d(
in_channels,
mid_channels,
kernel_size=(1, kernel_size[1], kernel_size[2]),
stride=(1, stride[1], stride[2]),
padding=(0, padding[1], padding[2]),
bias=bias)
_, self.bn_s = build_norm_layer(self.norm_cfg, mid_channels)
self.relu = nn.ReLU(inplace=True)
self.conv_t = nn.Conv3d(
mid_channels,
out_channels,
kernel_size=(kernel_size[0], 1, 1),
stride=(stride[0], 1, 1),
padding=(padding[0], 0, 0),
bias=bias)
self.init_weights()
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
x = self.conv_s(x)
x = self.bn_s(x)
x = self.relu(x)
x = self.conv_t(x)
return x
[docs] def init_weights(self) -> None:
"""Initiate the parameters from scratch."""
kaiming_init(self.conv_s)
kaiming_init(self.conv_t)
constant_init(self.bn_s, 1, bias=0)