Source code for mmaction.models.common.conv_audio
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model.weight_init import constant_init, kaiming_init
from torch.nn.modules.utils import _pair
from mmaction.registry import MODELS
[docs]@MODELS.register_module()
class ConvAudio(nn.Module):
    """Conv2d module for AudioResNet backbone.
        <https://arxiv.org/abs/2001.08740>`_.
    Args:
        in_channels (int): Same as ``nn.Conv2d``.
        out_channels (int): Same as ``nn.Conv2d``.
        kernel_size (Union[int, Tuple[int]]): Same as ``nn.Conv2d``.
        op (str): Operation to merge the output of freq
            and time feature map. Choices are ``sum`` and ``concat``.
            Defaults to ``concat``.
        stride (Union[int, Tuple[int]]): Same as ``nn.Conv2d``. Defaults to 1.
        padding (Union[int, Tuple[int]]): Same as ``nn.Conv2d``. Defaults to 0.
        dilation (Union[int, Tuple[int]]): Same as ``nn.Conv2d``.
            Defaults to 1.
        groups (int): Same as ``nn.Conv2d``. Defaults to 1.
        bias (Union[bool, str]): If specified as ``auto``, it will be decided
            by the ``norm_cfg``. Bias will be set as True if ``norm_cfg``
            is None, otherwise False. Defaults to False.
    """
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Union[int, Tuple[int]],
                 op: str = 'concat',
                 stride: Union[int, Tuple[int]] = 1,
                 padding: Union[int, Tuple[int]] = 0,
                 dilation: Union[int, Tuple[int]] = 1,
                 groups: int = 1,
                 bias: Union[bool, str] = False) -> None:
        super().__init__()
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        assert op in ['concat', 'sum']
        self.op = op
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.bias = bias
        self.output_padding = (0, 0)
        self.transposed = False
        self.conv_1 = ConvModule(
            in_channels,
            out_channels,
            kernel_size=(kernel_size[0], 1),
            stride=stride,
            padding=(kernel_size[0] // 2, 0),
            bias=bias,
            conv_cfg=dict(type='Conv'),
            norm_cfg=dict(type='BN'),
            act_cfg=dict(type='ReLU'))
        self.conv_2 = ConvModule(
            in_channels,
            out_channels,
            kernel_size=(1, kernel_size[1]),
            stride=stride,
            padding=(0, kernel_size[1] // 2),
            bias=bias,
            conv_cfg=dict(type='Conv'),
            norm_cfg=dict(type='BN'),
            act_cfg=dict(type='ReLU'))
        self.init_weights()
[docs]    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Defines the computation performed at every call.
        Args:
            x (torch.Tensor): The input data.
        Returns:
            torch.Tensor: The output of the module.
        """
        x_1 = self.conv_1(x)
        x_2 = self.conv_2(x)
        if self.op == 'concat':
            out = torch.cat([x_1, x_2], 1)
        else:
            out = x_1 + x_2
        return out
[docs]    def init_weights(self) -> None:
        """Initiate the parameters from scratch."""
        kaiming_init(self.conv_1.conv)
        kaiming_init(self.conv_2.conv)
        constant_init(self.conv_1.bn, 1, bias=0)
        constant_init(self.conv_2.bn, 1, bias=0)