Source code for mmaction.models.data_preprocessors.data_preprocessor
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple, Union
import torch
from mmengine.model import BaseDataPreprocessor, stack_batch
from mmaction.registry import MODELS
from mmaction.utils import SampleList
[docs]@MODELS.register_module()
class ActionDataPreprocessor(BaseDataPreprocessor):
"""Data pre-processor for action recognition tasks.
Args:
mean (Sequence[float or int], optional): The pixel mean of channels
of images or stacked optical flow. Defaults to None.
std (Sequence[float or int], optional): The pixel standard deviation
of channels of images or stacked optical flow. Defaults to None.
to_rgb (bool): Whether to convert image from BGR to RGB.
Defaults to False.
to_float32 (bool): Whether to convert data to float32.
Defaults to True.
blending (dict, optional): Config for batch blending.
Defaults to None.
format_shape (str): Format shape of input data.
Defaults to ``'NCHW'``.
"""
def __init__(self,
mean: Optional[Sequence[Union[float, int]]] = None,
std: Optional[Sequence[Union[float, int]]] = None,
to_rgb: bool = False,
to_float32: bool = True,
blending: Optional[dict] = None,
format_shape: str = 'NCHW') -> None:
super().__init__()
self.to_rgb = to_rgb
self.to_float32 = to_float32
self.format_shape = format_shape
if mean is not None:
assert std is not None, 'To enable the normalization in ' \
'preprocessing, please specify both ' \
'`mean` and `std`.'
# Enable the normalization in preprocessing.
self._enable_normalize = True
if self.format_shape == 'NCHW':
normalizer_shape = (-1, 1, 1)
elif self.format_shape in ['NCTHW', 'MIX2d3d']:
normalizer_shape = (-1, 1, 1, 1)
else:
raise ValueError(f'Invalid format shape: {format_shape}')
self.register_buffer(
'mean',
torch.tensor(mean, dtype=torch.float32).view(normalizer_shape),
False)
self.register_buffer(
'std',
torch.tensor(std, dtype=torch.float32).view(normalizer_shape),
False)
else:
self._enable_normalize = False
if blending is not None:
self.blending = MODELS.build(blending)
else:
self.blending = None
[docs] def forward(self,
data: Union[dict, Tuple[dict]],
training: bool = False) -> Union[dict, Tuple[dict]]:
"""Perform normalization, padding, bgr2rgb conversion and batch
augmentation based on ``BaseDataPreprocessor``.
Args:
data (dict or Tuple[dict]): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict or Tuple[dict]: Data in the same format as the model input.
"""
data = self.cast_data(data)
if isinstance(data, dict):
return self.forward_onesample(data, training=training)
elif isinstance(data, (tuple, list)):
outputs = []
for data_sample in data:
output = self.forward_onesample(data_sample, training=training)
outputs.append(output)
return tuple(outputs)
else:
raise TypeError(f'Unsupported data type: {type(data)}!')
[docs] def forward_onesample(self, data, training: bool = False) -> dict:
"""Perform normalization, padding, bgr2rgb conversion and batch
augmentation on one data sample.
Args:
data (dict): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input.
"""
inputs, data_samples = data['inputs'], data['data_samples']
inputs, data_samples = self.preprocess(inputs, data_samples, training)
data['inputs'] = inputs
data['data_samples'] = data_samples
return data
def preprocess(self,
inputs: List[torch.Tensor],
data_samples: SampleList,
training: bool = False) -> Tuple:
# --- Pad and stack --
batch_inputs = stack_batch(inputs)
if self.format_shape == 'MIX2d3d':
if batch_inputs.ndim == 4:
format_shape, view_shape = 'NCHW', (-1, 1, 1)
else:
format_shape, view_shape = 'NCTHW', None
else:
format_shape, view_shape = self.format_shape, None
# ------ To RGB ------
if self.to_rgb:
if format_shape == 'NCHW':
batch_inputs = batch_inputs[..., [2, 1, 0], :, :]
elif format_shape == 'NCTHW':
batch_inputs = batch_inputs[..., [2, 1, 0], :, :, :]
else:
raise ValueError(f'Invalid format shape: {format_shape}')
# -- Normalization ---
if self._enable_normalize:
if view_shape is None:
batch_inputs = (batch_inputs - self.mean) / self.std
else:
mean = self.mean.view(view_shape)
std = self.std.view(view_shape)
batch_inputs = (batch_inputs - mean) / std
elif self.to_float32:
batch_inputs = batch_inputs.to(torch.float32)
# ----- Blending -----
if training and self.blending is not None:
batch_inputs, data_samples = self.blending(batch_inputs,
data_samples)
return batch_inputs, data_samples