Source code for mmaction.models.heads.i3d_head
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.model.weight_init import normal_init
from torch import Tensor, nn
from mmaction.registry import MODELS
from mmaction.utils import ConfigType
from .base import BaseHead
[docs]@MODELS.register_module()
class I3DHead(BaseHead):
"""Classification head for I3D.
Args:
num_classes (int): Number of classes to be classified.
in_channels (int): Number of channels in input feature.
loss_cls (dict or ConfigDict): Config for building loss.
Default: dict(type='CrossEntropyLoss')
spatial_type (str): Pooling type in spatial dimension. Default: 'avg'.
dropout_ratio (float): Probability of dropout layer. Default: 0.5.
init_std (float): Std value for Initiation. Default: 0.01.
kwargs (dict, optional): Any keyword argument to be used to initialize
the head.
"""
def __init__(self,
num_classes: int,
in_channels: int,
loss_cls: ConfigType = dict(type='CrossEntropyLoss'),
spatial_type: str = 'avg',
dropout_ratio: float = 0.5,
init_std: float = 0.01,
**kwargs) -> None:
super().__init__(num_classes, in_channels, loss_cls, **kwargs)
self.spatial_type = spatial_type
self.dropout_ratio = dropout_ratio
self.init_std = init_std
if self.dropout_ratio != 0:
self.dropout = nn.Dropout(p=self.dropout_ratio)
else:
self.dropout = None
self.fc_cls = nn.Linear(self.in_channels, self.num_classes)
if self.spatial_type == 'avg':
# use `nn.AdaptiveAvgPool3d` to adaptively match the in_channels.
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
else:
self.avg_pool = None
[docs] def init_weights(self) -> None:
"""Initiate the parameters from scratch."""
normal_init(self.fc_cls, std=self.init_std)
[docs] def forward(self, x: Tensor, **kwargs) -> Tensor:
"""Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The classification scores for input samples.
"""
# [N, in_channels, 4, 7, 7]
if self.avg_pool is not None:
x = self.avg_pool(x)
# [N, in_channels, 1, 1, 1]
if self.dropout is not None:
x = self.dropout(x)
# [N, in_channels, 1, 1, 1]
x = x.view(x.shape[0], -1)
# [N, in_channels]
cls_score = self.fc_cls(x)
# [N, num_classes]
return cls_score