Shortcuts

Source code for mmaction.models.heads.mvit_head

# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple

from mmengine.model.weight_init import constant_init, trunc_normal_init
from torch import Tensor, nn

from mmaction.registry import MODELS
from mmaction.utils import ConfigType
from .base import BaseHead


[docs]@MODELS.register_module() class MViTHead(BaseHead): """Classification head for Multi-scale ViT. A PyTorch implement of : `MViTv2: Improved Multiscale Vision Transformers for Classification and Detection <https://arxiv.org/abs/2112.01526>`_ Args: num_classes (int): Number of classes to be classified. in_channels (int): Number of channels in input feature. loss_cls (dict or ConfigDict): Config for building loss. Defaults to `dict(type='CrossEntropyLoss')`. dropout_ratio (float): Probability of dropout layer. Defaults to 0.5. init_std (float): Std value for Initiation. Defaults to 0.02. init_scale (float): Scale factor for Initiation parameters. Defaults to 1. with_cls_token (bool): Whether the backbone output feature with cls_token. Defaults to True. kwargs (dict, optional): Any keyword argument to be used to initialize the head. """ def __init__(self, num_classes: int, in_channels: int, loss_cls: ConfigType = dict(type='CrossEntropyLoss'), dropout_ratio: float = 0.5, init_std: float = 0.02, init_scale: float = 1.0, with_cls_token: bool = True, **kwargs) -> None: super().__init__(num_classes, in_channels, loss_cls, **kwargs) self.init_std = init_std self.init_scale = init_scale self.dropout_ratio = dropout_ratio self.with_cls_token = with_cls_token if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None self.fc_cls = nn.Linear(self.in_channels, self.num_classes)
[docs] def init_weights(self) -> None: """Initiate the parameters from scratch.""" trunc_normal_init(self.fc_cls.weight, std=self.init_std) constant_init(self.fc_cls.bias, 0.02) self.fc_cls.weight.data.mul_(self.init_scale) self.fc_cls.bias.data.mul_(self.init_scale)
[docs] def pre_logits(self, feats: Tuple[List[Tensor]]) -> Tensor: """The process before the final classification head. The input ``feats`` is a tuple of list of tensor, and each tensor is the feature of a backbone stage. """ if self.with_cls_token: _, cls_token = feats[-1] return cls_token else: patch_token = feats[-1] return patch_token.mean(dim=(2, 3, 4))
[docs] def forward(self, x: Tuple[List[Tensor]], **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tuple[List[Tensor]]): The input data. Returns: Tensor: The classification scores for input samples. """ x = self.pre_logits(x) if self.dropout is not None: x = self.dropout(x) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score