Source code for mmaction.models.heads.omni_head
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from mmaction.evaluation import top_k_accuracy
from mmaction.registry import MODELS
from mmaction.utils import ConfigType, SampleList
from .base import BaseHead
[docs]@MODELS.register_module()
class OmniHead(BaseHead):
"""Classification head for OmniResNet that accepts both image and video
inputs.
Args:
image_classes (int): Number of image classes to be classified.
video_classes (int): Number of video classes to be classified.
in_channels (int): Number of channels in input feature.
loss_cls (dict or ConfigDict): Config for building loss.
Default: dict(type='CrossEntropyLoss')
image_dropout_ratio (float): Probability of dropout layer for the image
head. Defaults to 0.2.
video_dropout_ratio (float): Probability of dropout layer for the video
head. Defaults to 0.5.
video_nl_head (bool): if true, use a non-linear head for the video
head. Defaults to True.
"""
def __init__(self,
image_classes: int,
video_classes: int,
in_channels: int,
loss_cls: ConfigType = dict(type='CrossEntropyLoss'),
image_dropout_ratio: float = 0.2,
video_dropout_ratio: float = 0.5,
video_nl_head: bool = True,
**kwargs) -> None:
super().__init__(image_classes, in_channels, loss_cls, **kwargs)
self.fc2d = nn.Sequential(
nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.BatchNorm1d(in_channels),
nn.Dropout(image_dropout_ratio),
nn.Linear(in_channels, image_classes))
if video_nl_head:
self.fc3d = nn.Sequential(
nn.AdaptiveAvgPool3d(1), nn.Flatten(),
nn.Linear(in_channels, video_classes * 2),
nn.BatchNorm1d(video_classes * 2), nn.ReLU(inplace=True),
nn.Dropout(video_dropout_ratio),
nn.Linear(video_classes * 2, video_classes))
else:
self.fc3d = nn.Sequential(
nn.AdaptiveAvgPool3d(1), nn.Flatten(),
nn.BatchNorm1d(in_channels), nn.Dropout(video_dropout_ratio),
nn.Linear(in_channels, video_classes))
[docs] def forward(self, x: Tensor, **kwargs) -> Tensor:
"""Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The classification scores for input samples.
"""
if len(x.shape) == 4:
cls_score = self.fc2d(x)
else:
cls_score = self.fc3d(x)
return cls_score
[docs] def loss_by_feat(self, cls_scores: Union[Tensor, Tuple[Tensor]],
data_samples: SampleList) -> dict:
"""Calculate the loss based on the features extracted by the head.
Args:
cls_scores (Tensor): Classification prediction results of
all class, has shape (batch_size, num_classes).
data_samples (List[:obj:`ActionDataSample`]): The batch
data samples.
Returns:
dict: A dictionary of loss components.
"""
labels = [x.gt_label for x in data_samples]
labels = torch.stack(labels).to(cls_scores.device)
labels = labels.squeeze()
losses = dict()
if labels.shape == torch.Size([]):
labels = labels.unsqueeze(0)
elif labels.dim() == 1 and cls_scores.size()[0] == 1:
# Fix a bug when training with soft labels and batch size is 1.
# When using soft labels, `labels` and `cls_socre` share the same
# shape.
labels = labels.unsqueeze(0)
if cls_scores.size() != labels.size():
top_k_acc = top_k_accuracy(cls_scores.detach().cpu().numpy(),
labels.detach().cpu().numpy(),
self.topk)
for k, a in zip(self.topk, top_k_acc):
losses[f'top{k}_acc'] = torch.tensor(
a, device=cls_scores.device)
if self.label_smooth_eps != 0:
if cls_scores.size() != labels.size():
labels = F.one_hot(labels, num_classes=self.num_classes)
labels = ((1 - self.label_smooth_eps) * labels +
self.label_smooth_eps / self.num_classes)
loss_cls = self.loss_cls(cls_scores, labels)
# loss_cls may be dictionary or single tensor
if isinstance(loss_cls, dict):
losses.update(loss_cls)
else:
losses['loss_cls'] = loss_cls
return losses