Source code for mmaction.models.heads.timesformer_head
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.model.weight_init import trunc_normal_init
from torch import Tensor, nn
from mmaction.registry import MODELS
from mmaction.utils import ConfigType
from .base import BaseHead
[docs]@MODELS.register_module()
class TimeSformerHead(BaseHead):
"""Classification head for TimeSformer.
Args:
num_classes (int): Number of classes to be classified.
in_channels (int): Number of channels in input feature.
loss_cls (dict or ConfigDict): Config for building loss.
Defaults to `dict(type='CrossEntropyLoss')`.
init_std (float): Std value for Initiation. Defaults to 0.02.
dropout_ratio (float): Probability of dropout layer.
Defaults to : 0.0.
kwargs (dict, optional): Any keyword argument to be used to initialize
the head.
"""
def __init__(self,
num_classes: int,
in_channels: int,
loss_cls: ConfigType = dict(type='CrossEntropyLoss'),
init_std: float = 0.02,
dropout_ratio: float = 0.0,
**kwargs) -> None:
super().__init__(num_classes, in_channels, loss_cls, **kwargs)
self.init_std = init_std
self.dropout_ratio = dropout_ratio
if self.dropout_ratio != 0:
self.dropout = nn.Dropout(p=self.dropout_ratio)
else:
self.dropout = None
self.fc_cls = nn.Linear(self.in_channels, self.num_classes)
[docs] def init_weights(self) -> None:
"""Initiate the parameters from scratch."""
trunc_normal_init(self.fc_cls, std=self.init_std)
[docs] def forward(self, x: Tensor, **kwargs) -> Tensor:
"""Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The classification scores for input samples.
"""
# [N, in_channels]
if self.dropout is not None:
x = self.dropout(x)
# [N, in_channels]
cls_score = self.fc_cls(x)
# [N, num_classes]
return cls_score