Source code for mmaction.models.heads.x3d_head
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.model.weight_init import normal_init
from torch import Tensor, nn
from mmaction.registry import MODELS
from mmaction.utils import ConfigType
from .base import BaseHead
[docs]@MODELS.register_module()
class X3DHead(BaseHead):
    """Classification head for I3D.
    Args:
        num_classes (int): Number of classes to be classified.
        in_channels (int): Number of channels in input feature.
        loss_cls (dict or ConfigDict): Config for building loss.
            Default: dict(type='CrossEntropyLoss')
        spatial_type (str): Pooling type in spatial dimension. Default: 'avg'.
        dropout_ratio (float): Probability of dropout layer. Default: 0.5.
        init_std (float): Std value for Initiation. Default: 0.01.
        fc1_bias (bool): If the first fc layer has bias. Default: False.
    """
    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 loss_cls: ConfigType = dict(type='CrossEntropyLoss'),
                 spatial_type: str = 'avg',
                 dropout_ratio: float = 0.5,
                 init_std: float = 0.01,
                 fc1_bias: bool = False,
                 **kwargs) -> None:
        super().__init__(num_classes, in_channels, loss_cls, **kwargs)
        self.spatial_type = spatial_type
        self.dropout_ratio = dropout_ratio
        self.init_std = init_std
        if self.dropout_ratio != 0:
            self.dropout = nn.Dropout(p=self.dropout_ratio)
        else:
            self.dropout = None
        self.in_channels = in_channels
        self.mid_channels = 2048
        self.num_classes = num_classes
        self.fc1_bias = fc1_bias
        self.fc1 = nn.Linear(
            self.in_channels, self.mid_channels, bias=self.fc1_bias)
        self.fc2 = nn.Linear(self.mid_channels, self.num_classes)
        self.relu = nn.ReLU()
        self.pool = None
        if self.spatial_type == 'avg':
            self.pool = nn.AdaptiveAvgPool3d((1, 1, 1))
        elif self.spatial_type == 'max':
            self.pool = nn.AdaptiveMaxPool3d((1, 1, 1))
        else:
            raise NotImplementedError
[docs]    def init_weights(self) -> None:
        """Initiate the parameters from scratch."""
        normal_init(self.fc1, std=self.init_std)
        normal_init(self.fc2, std=self.init_std)
[docs]    def forward(self, x: Tensor, **kwargs) -> Tensor:
        """Defines the computation performed at every call.
        Args:
            x (Tensor): The input data.
        Returns:
            Tensor: The classification scores for input samples.
        """
        # [N, in_channels, T, H, W]
        assert self.pool is not None
        x = self.pool(x)
        # [N, in_channels, 1, 1, 1]
        # [N, in_channels, 1, 1, 1]
        x = x.view(x.shape[0], -1)
        # [N, in_channels]
        x = self.fc1(x)
        # [N, 2048]
        x = self.relu(x)
        if self.dropout is not None:
            x = self.dropout(x)
        cls_score = self.fc2(x)
        # [N, num_classes]
        return cls_score