Source code for mmaction.structures.bbox.transforms
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
[docs]def bbox2result(bboxes: torch.Tensor,
labels: torch.Tensor,
num_classes: int,
thr: float = 0.01) -> list:
"""Convert detection results to a list of numpy arrays.
This identifies single-label classification (as opposed to multi-label)
through the thr parameter which is set to a negative value.
ToDo: The ideal way would be for this to be automatically set when the
Currently, the way to set this is to set ``test_cfg.rcnn.action_thr=-1.0``
model cfg uses multilabel=False, however this could be a breaking change
and is left as a future exercise.
NB - this should not interfere with the evaluation in any case.
Args:
bboxes (torch.Tensor): shape ``(n, 4)``.
labels (torch.Tensor): shape ``(n, num_classes)``.
num_classes (int): class number, including background class.
thr (float): The score threshold used when converting predictions to
detection results. If a single negative value, uses single-label
classification.
Returns:
List(ndarray): bbox results of each class.
"""
if bboxes.shape[0] == 0:
return list(np.zeros((num_classes - 1, 0, 5), dtype=np.float32))
bboxes = bboxes.cpu().numpy()
scores = labels.cpu().numpy() # rename for clarification
# Although we can handle single-label classification, we still want scores
assert scores.shape[-1] > 1
# Robustly check for multi/single-label:
if not hasattr(thr, '__len__'):
multilabel = thr >= 0
thr = (thr, ) * num_classes
else:
multilabel = True
# Check Shape
assert scores.shape[1] == num_classes
assert len(thr) == num_classes
result = []
for i in range(num_classes - 1):
if multilabel:
where = (scores[:, i + 1] > thr[i + 1])
else:
where = (scores[:, 1:].argmax(axis=1) == i)
result.append(
np.concatenate((bboxes[where, :4], scores[where, i + 1:i + 2]),
axis=1))
return result