Source code for mmaction.utils.gradcam_utils
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
[docs]class GradCAM:
    """GradCAM class helps create visualization results.
    Visualization results are blended by heatmaps and input images.
    This class is modified from
    https://github.com/facebookresearch/SlowFast/blob/master/slowfast/visualization/gradcam_utils.py # noqa
    For more information about GradCAM, please visit:
    https://arxiv.org/pdf/1610.02391.pdf
    Args:
        model (nn.Module): the recognizer model to be used.
        target_layer_name (str): name of convolutional layer to
            be used to get gradients and feature maps from for creating
            localization maps.
        colormap (str): matplotlib colormap used to create
            heatmap. Defaults to 'viridis'. For more information, please visit
            https://matplotlib.org/3.3.0/tutorials/colors/colormaps.html
    """
    def __init__(self,
                 model: nn.Module,
                 target_layer_name: str,
                 colormap: str = 'viridis') -> None:
        from ..models.recognizers import Recognizer2D, Recognizer3D
        if isinstance(model, Recognizer2D):
            self.is_recognizer2d = True
        elif isinstance(model, Recognizer3D):
            self.is_recognizer2d = False
        else:
            raise ValueError(
                'GradCAM utils only support Recognizer2D & Recognizer3D.')
        self.model = model
        self.model.eval()
        self.target_gradients = None
        self.target_activations = None
        import matplotlib.pyplot as plt
        self.colormap = plt.get_cmap(colormap)
        self._register_hooks(target_layer_name)
    def _register_hooks(self, layer_name: str) -> None:
        """Register forward and backward hook to a layer, given layer_name, to
        obtain gradients and activations.
        Args:
            layer_name (str): name of the layer.
        """
        def get_gradients(module, grad_input, grad_output):
            self.target_gradients = grad_output[0].detach()
        def get_activations(module, input, output):
            self.target_activations = output.clone().detach()
        layer_ls = layer_name.split('/')
        prev_module = self.model
        for layer in layer_ls:
            prev_module = prev_module._modules[layer]
        target_layer = prev_module
        target_layer.register_forward_hook(get_activations)
        target_layer.register_backward_hook(get_gradients)
    def _calculate_localization_map(self,
                                    data: dict,
                                    use_labels: bool,
                                    delta=1e-20) -> tuple:
        """Calculate localization map for all inputs with Grad-CAM.
        Args:
            data (dict): model inputs, generated by test pipeline,
            use_labels (bool): Whether to use given labels to generate
                localization map.
            delta (float): used in localization map normalization,
                must be small enough. Please make sure
                `localization_map_max - localization_map_min >> delta`
        Returns:
            localization_map (torch.Tensor): the localization map for
            input imgs.
            preds (torch.Tensor): Model predictions with shape
            (batch_size, num_classes).
        """
        inputs = data['inputs']
        # use score before softmax
        self.model.cls_head.average_clips = 'score'
        # model forward & backward
        results = self.model.test_step(data)
        preds = [result.pred_score for result in results]
        preds = torch.stack(preds)
        if use_labels:
            labels = [result.gt_label for result in results]
            labels = torch.stack(labels)
            score = torch.gather(preds, dim=1, index=labels)
        else:
            score = torch.max(preds, dim=-1)[0]
        self.model.zero_grad()
        score = torch.sum(score)
        score.backward()
        imgs = torch.stack(inputs)
        if self.is_recognizer2d:
            # [batch_size, num_segments, 3, H, W]
            b, t, _, h, w = imgs.size()
        else:
            # [batch_size, num_crops*num_clips, 3, clip_len, H, W]
            b1, b2, _, t, h, w = imgs.size()
            b = b1 * b2
        gradients = self.target_gradients
        activations = self.target_activations
        if self.is_recognizer2d:
            # [B*Tg, C', H', W']
            b_tg, c, _, _ = gradients.size()
            tg = b_tg // b
        else:
            # source shape: [B, C', Tg, H', W']
            _, c, tg, _, _ = gradients.size()
            # target shape: [B, Tg, C', H', W']
            gradients = gradients.permute(0, 2, 1, 3, 4)
            activations = activations.permute(0, 2, 1, 3, 4)
        # calculate & resize to [B, 1, T, H, W]
        weights = torch.mean(gradients.view(b, tg, c, -1), dim=3)
        weights = weights.view(b, tg, c, 1, 1)
        activations = activations.view([b, tg, c] +
                                       list(activations.size()[-2:]))
        localization_map = torch.sum(
            weights * activations, dim=2, keepdim=True)
        localization_map = F.relu(localization_map)
        localization_map = localization_map.permute(0, 2, 1, 3, 4)
        localization_map = F.interpolate(
            localization_map,
            size=(t, h, w),
            mode='trilinear',
            align_corners=False)
        # Normalize the localization map.
        localization_map_min, localization_map_max = (
            torch.min(localization_map.view(b, -1), dim=-1, keepdim=True)[0],
            torch.max(localization_map.view(b, -1), dim=-1, keepdim=True)[0])
        localization_map_min = torch.reshape(
            localization_map_min, shape=(b, 1, 1, 1, 1))
        localization_map_max = torch.reshape(
            localization_map_max, shape=(b, 1, 1, 1, 1))
        localization_map = (localization_map - localization_map_min) / (
            localization_map_max - localization_map_min + delta)
        localization_map = localization_map.data
        return localization_map.squeeze(dim=1), preds
    def _alpha_blending(self, localization_map: torch.Tensor,
                        input_imgs: torch.Tensor,
                        alpha: float) -> torch.Tensor:
        """Blend heatmaps and model input images and get visulization results.
        Args:
            localization_map (torch.Tensor): localization map for all inputs,
                generated with Grad-CAM.
            input_imgs (torch.Tensor): model inputs, raw images.
            alpha (float): transparency level of the heatmap,
                in the range [0, 1].
        Returns:
            torch.Tensor: blending results for localization map and input
            images, with shape [B, T, H, W, 3] and pixel values in
            RGB order within range [0, 1].
        """
        # localization_map shape [B, T, H, W]
        localization_map = localization_map.cpu()
        # heatmap shape [B, T, H, W, 3] in RGB order
        heatmap = self.colormap(localization_map.detach().numpy())
        heatmap = heatmap[..., :3]
        heatmap = torch.from_numpy(heatmap)
        input_imgs = torch.stack(input_imgs)
        # Permute input imgs to [B, T, H, W, 3], like heatmap
        if self.is_recognizer2d:
            # Recognizer2D input (B, T, C, H, W)
            curr_inp = input_imgs.permute(0, 1, 3, 4, 2)
        else:
            # Recognizer3D input (B', num_clips*num_crops, C, T, H, W)
            # B = B' * num_clips * num_crops
            curr_inp = input_imgs.view([-1] + list(input_imgs.size()[2:]))
            curr_inp = curr_inp.permute(0, 2, 3, 4, 1)
        # renormalize input imgs to [0, 1]
        curr_inp = curr_inp.cpu().float()
        curr_inp /= 255.
        # alpha blending
        blended_imgs = alpha * heatmap + (1 - alpha) * curr_inp
        return blended_imgs
    def __call__(self,
                 data: dict,
                 use_labels: bool = False,
                 alpha: float = 0.5) -> tuple:
        """Visualize the localization maps on their corresponding inputs as
        heatmap, using Grad-CAM.
        Generate visualization results for **ALL CROPS**.
        For example, for I3D model, if `clip_len=32, num_clips=10` and
        use `ThreeCrop` in test pipeline, then for every model inputs,
        there are 960(32*10*3) images generated.
        Args:
            data (dict): model inputs, generated by test pipeline.
            use_labels (bool): Whether to use given labels to generate
                localization map.
            alpha (float): transparency level of the heatmap,
                in the range [0, 1].
        Returns:
            blended_imgs (torch.Tensor): Visualization results, blended by
            localization maps and model inputs.
            preds (torch.Tensor): Model predictions for inputs.
        """
        # localization_map shape [B, T, H, W]
        # preds shape [batch_size, num_classes]
        localization_map, preds = self._calculate_localization_map(
            data, use_labels=use_labels)
        # blended_imgs shape [B, T, H, W, 3]
        blended_imgs = self._alpha_blending(localization_map, data['inputs'],
                                            alpha)
        # blended_imgs shape [B, T, H, W, 3]
        # preds shape [batch_size, num_classes]
        # Recognizer2D: B = batch_size, T = num_segments
        # Recognizer3D: B = batch_size * num_crops * num_clips, T = clip_len
        return blended_imgs, preds