Customize Logging¶
MMAction2 produces a lot of logs during the running process, such as loss, iteration time, learning rate, etc. In this section, we will introduce you how to output custom log. More details about the logging system, please refer to MMEngine Tutorial.
Flexible Logging System¶
The MMAction2 logging system is configured by the LogProcessor
in default_runtime by default, which is equivalent to:
log_processor = dict(type='LogProcessor', window_size=20, by_epoch=True)
By default, the LogProcessor
captures all fields that begin with loss
returned by model.forward
. For instance, in the following model, loss1
and loss2
will be logged automatically without any additional configuration.
from mmengine.model import BaseModel
class ToyModel(BaseModel):
def __init__(self) -> None:
super().__init__()
self.linear = nn.Linear(1, 1)
def forward(self, img, label, mode):
feat = self.linear(img)
loss1 = (feat - label).pow(2)
loss2 = (feat - label).abs()
return dict(loss1=loss1, loss2=loss2)
The output log follows the following format:
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0019 data_time: 0.0004 loss1: 0.8381 loss2: 0.9007 loss: 1.7388
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0029 data_time: 0.0010 loss1: 0.1978 loss2: 0.4312 loss: 0.6290
LogProcessor
will output the log in the following format:
The prefix of the log:
epoch mode(
by_epoch=True
):Epoch(train) [{current_epoch}/{current_iteration}]/{dataloader_length}
iteration mode(
by_epoch=False
):Iter(train) [{current_iteration}/{max_iteration}]
Learning rate (
lr
): The learning rate of the last iteration.Time:
time
: The averaged time for inference of the lastwindow_size
iterations.data_time
: The averaged time for loading data of the lastwindow_size
iterations.eta
: The estimated time of arrival to finish the training.
Loss: The averaged loss output by model of the last
window_size
iterations.
Warning
log_processor outputs the epoch based log by default(by_epoch=True
). To get an expected log matched with the train_cfg
, we should set the same value for by_epoch
in train_cfg
and log_processor
.
Based on the rules above, the code snippet will count the average value of the loss1 and the loss2 every 20 iterations. More types of statistical methods, please refer to mmengine.runner.LogProcessor.
Customize log¶
The logging system could not only log the loss
, lr
, .etc but also collect and output the custom log. For example, if we want to statistic the intermediate loss:
The ToyModel
calculate loss_tmp
in forward, but don’t save it into the return dict.
from mmengine.logging import MessageHub
class ToyModel(BaseModel):
def __init__(self) -> None:
super().__init__()
self.linear = nn.Linear(1, 1)
def forward(self, img, label, mode):
feat = self.linear(img)
loss_tmp = (feat - label).abs()
loss = loss_tmp.pow(2)
message_hub = MessageHub.get_current_instance()
# update the intermediate `loss_tmp` in the message hub
message_hub.update_scalar('train/loss_tmp', loss_tmp.sum())
return dict(loss=loss)
Add the loss_tmp
into the config:
log_processor = dict(
type='LogProcessor',
window_size=20,
by_epoch=True,
custom_cfg=[
# statistic the loss_tmp with the averaged value
dict(
data_src='loss_tmp',
window_size=20,
method_name='mean')
])
The loss_tmp
will be added to the output log:
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0026 data_time: 0.0008 loss_tmp: 0.0097 loss: 0.0000
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0028 data_time: 0.0013 loss_tmp: 0.0065 loss: 0.0000
Export the debug log¶
To export the debug log to the work_dir
, you can set log_level in config file as follows:
log_level='DEBUG'
08/21 18:16:22 - mmengine - DEBUG - Get class `LocalVisBackend` from "vis_backend" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `LocalVisBackend` instance is built from registry, its implementation can be found in mmengine.visualization.vis_backend
08/21 18:16:22 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, its implementation can be found in mmengine.hooks.runtime_info_hook
08/21 18:16:22 - mmengine - DEBUG - Get class `IterTimerHook` from "hook" registry in "mmengine"
...
Besides, logs of different ranks will be saved in debug
mode if you are training your model with the shared storage. The hierarchy of the log is as follows:
./tmp
├── tmp.log
├── tmp_rank1.log
├── tmp_rank2.log
├── tmp_rank3.log
├── tmp_rank4.log
├── tmp_rank5.log
├── tmp_rank6.log
└── tmp_rank7.log
...
└── tmp_rank63.log
The log of Multiple machines with independent storage:
# device: 0:
work_dir/
└── exp_name_logs
├── exp_name.log
├── exp_name_rank1.log
├── exp_name_rank2.log
├── exp_name_rank3.log
...
└── exp_name_rank7.log
# device: 7:
work_dir/
└── exp_name_logs
├── exp_name_rank56.log
├── exp_name_rank57.log
├── exp_name_rank58.log
...
└── exp_name_rank63.log