A 20-Minute Guide to MMAction2 FrameWork¶
In this tutorial, we will demonstrate the overall architecture of our MMACTION2 1.0
through a step-by-step example of video action recognition.
The structure of this tutorial is as follows:
First, we need to initialize the scope
for registry, to ensure that each module is registered under the scope of mmaction
. For more detailed information about registry, please refer to MMEngine Tutorial.
from mmaction.utils import register_all_modules
register_all_modules(init_default_scope=True)
Step0: Prepare Data¶
Please download our self-made kinetics400_tiny dataset and extract it to the $MMACTION2/data
directory.
The directory structure after extraction should be as follows:
mmaction2
├── data
│ ├── kinetics400_tiny
│ │ ├── kinetics_tiny_train_video.txt
│ │ ├── kinetics_tiny_val_video.txt
│ │ ├── train
│ │ │ ├── 27_CSXByd3s.mp4
│ │ │ ├── 34XczvTaRiI.mp4
│ │ │ ├── A-wiliK50Zw.mp4
│ │ │ ├── ...
│ │ └── val
│ │ ├── 0pVGiAU6XEA.mp4
│ │ ├── AQrbRSnRt8M.mp4
│ │ ├── ...
Here are some examples from the annotation file kinetics_tiny_train_video.txt
:
D32_1gwq35E.mp4 0
iRuyZSKhHRg.mp4 1
oXy-e_P_cAI.mp4 0
34XczvTaRiI.mp4 1
h2YqqUhnR34.mp4 0
Each line in the file represents the annotation of a video, where the first item denotes the video filename (e.g., D32_1gwq35E.mp4
), and the second item represents the corresponding label (e.g., label 0
for D32_1gwq35E.mp4
). In this dataset, there are only two
categories.
Step1: Build a Pipeline¶
In order to decode
, sample
, resize
, crop
, format
, and pack
the input video and corresponding annotation, we need to design a pipeline to handle these processes. Specifically, we design seven Transform
classes to build this video processing pipeline. Note that all Transform
classes in OpenMMLab must inherit from the BaseTransform
class in mmcv
, implement the abstract method transform
, and be registered to the TRANSFORMS
registry. For more detailed information about data transform, please refer to MMEngine Tutorial.
import mmcv
import decord
import numpy as np
from mmcv.transforms import TRANSFORMS, BaseTransform, to_tensor
from mmaction.structures import ActionDataSample
@TRANSFORMS.register_module()
class VideoInit(BaseTransform):
def transform(self, results):
container = decord.VideoReader(results['filename'])
results['total_frames'] = len(container)
results['video_reader'] = container
return results
@TRANSFORMS.register_module()
class VideoSample(BaseTransform):
def __init__(self, clip_len, num_clips, test_mode=False):
self.clip_len = clip_len
self.num_clips = num_clips
self.test_mode = test_mode
def transform(self, results):
total_frames = results['total_frames']
interval = total_frames // self.clip_len
if self.test_mode:
# Make the sampling during testing deterministic
np.random.seed(42)
inds_of_all_clips = []
for i in range(self.num_clips):
bids = np.arange(self.clip_len) * interval
offset = np.random.randint(interval, size=bids.shape)
inds = bids + offset
inds_of_all_clips.append(inds)
results['frame_inds'] = np.concatenate(inds_of_all_clips)
results['clip_len'] = self.clip_len
results['num_clips'] = self.num_clips
return results
@TRANSFORMS.register_module()
class VideoDecode(BaseTransform):
def transform(self, results):
frame_inds = results['frame_inds']
container = results['video_reader']
imgs = container.get_batch(frame_inds).asnumpy()
imgs = list(imgs)
results['video_reader'] = None
del container
results['imgs'] = imgs
results['img_shape'] = imgs[0].shape[:2]
return results
@TRANSFORMS.register_module()
class VideoResize(BaseTransform):
def __init__(self, r_size):
self.r_size = (np.inf, r_size)
def transform(self, results):
img_h, img_w = results['img_shape']
new_w, new_h = mmcv.rescale_size((img_w, img_h), self.r_size)
imgs = [mmcv.imresize(img, (new_w, new_h))
for img in results['imgs']]
results['imgs'] = imgs
results['img_shape'] = imgs[0].shape[:2]
return results
@TRANSFORMS.register_module()
class VideoCrop(BaseTransform):
def __init__(self, c_size):
self.c_size = c_size
def transform(self, results):
img_h, img_w = results['img_shape']
center_x, center_y = img_w // 2, img_h // 2
x1, x2 = center_x - self.c_size // 2, center_x + self.c_size // 2
y1, y2 = center_y - self.c_size // 2, center_y + self.c_size // 2
imgs = [img[y1:y2, x1:x2] for img in results['imgs']]
results['imgs'] = imgs
results['img_shape'] = imgs[0].shape[:2]
return results
@TRANSFORMS.register_module()
class VideoFormat(BaseTransform):
def transform(self, results):
num_clips = results['num_clips']
clip_len = results['clip_len']
imgs = results['imgs']
# [num_clips*clip_len, H, W, C]
imgs = np.array(imgs)
# [num_clips, clip_len, H, W, C]
imgs = imgs.reshape((num_clips, clip_len) + imgs.shape[1:])
# [num_clips, C, clip_len, H, W]
imgs = imgs.transpose(0, 4, 1, 2, 3)
results['imgs'] = imgs
return results
@TRANSFORMS.register_module()
class VideoPack(BaseTransform):
def __init__(self, meta_keys=('img_shape', 'num_clips', 'clip_len')):
self.meta_keys = meta_keys
def transform(self, results):
packed_results = dict()
inputs = to_tensor(results['imgs'])
data_sample = ActionDataSample()
data_sample.set_gt_label(results['label'])
metainfo = {k: results[k] for k in self.meta_keys if k in results}
data_sample.set_metainfo(metainfo)
packed_results['inputs'] = inputs
packed_results['data_samples'] = data_sample
return packed_results
Below, we provide a code snippet (using D32_1gwq35E.mp4 0
from the annotation file) to demonstrate how to use the pipeline.
import os.path as osp
from mmengine.dataset import Compose
pipeline_cfg = [
dict(type='VideoInit'),
dict(type='VideoSample', clip_len=16, num_clips=1, test_mode=False),
dict(type='VideoDecode'),
dict(type='VideoResize', r_size=256),
dict(type='VideoCrop', c_size=224),
dict(type='VideoFormat'),
dict(type='VideoPack')
]
pipeline = Compose(pipeline_cfg)
data_prefix = 'data/kinetics400_tiny/train'
results = dict(filename=osp.join(data_prefix, 'D32_1gwq35E.mp4'), label=0)
packed_results = pipeline(results)
inputs = packed_results['inputs']
data_sample = packed_results['data_samples']
print('shape of the inputs: ', inputs.shape)
# Get metainfo of the inputs
print('image_shape: ', data_sample.img_shape)
print('num_clips: ', data_sample.num_clips)
print('clip_len: ', data_sample.clip_len)
# Get label of the inputs
print('label: ', data_sample.gt_label)
shape of the inputs: torch.Size([1, 3, 16, 224, 224])
image_shape: (224, 224)
num_clips: 1
clip_len: 16
label: tensor([0])
Step2: Build a Dataset and DataLoader¶
All Dataset
classes in OpenMMLab must inherit from the BaseDataset
class in mmengine
. We can customize annotation loading process by overriding the load_data_list
method. Additionally, we can add more information to the results
dict that is passed as input to the pipeline
by overriding the get_data_info
method. For more detailed information about BaseDataset
class, please refer to MMEngine Tutorial.
import os.path as osp
from mmengine.fileio import list_from_file
from mmengine.dataset import BaseDataset
from mmaction.registry import DATASETS
@DATASETS.register_module()
class DatasetZelda(BaseDataset):
def __init__(self, ann_file, pipeline, data_root, data_prefix=dict(video=''),
test_mode=False, modality='RGB', **kwargs):
self.modality = modality
super(DatasetZelda, self).__init__(ann_file=ann_file, pipeline=pipeline, data_root=data_root,
data_prefix=data_prefix, test_mode=test_mode,
**kwargs)
def load_data_list(self):
data_list = []
fin = list_from_file(self.ann_file)
for line in fin:
line_split = line.strip().split()
filename, label = line_split
label = int(label)
filename = osp.join(self.data_prefix['video'], filename)
data_list.append(dict(filename=filename, label=label))
return data_list
def get_data_info(self, idx: int) -> dict:
data_info = super().get_data_info(idx)
data_info['modality'] = self.modality
return data_info
Next, we will demonstrate how to use dataset and dataloader to index data. We will use the Runner.build_dataloader
method to construct the dataloader. For more detailed information about dataloader, please refer to MMEngine Tutorial.
from mmaction.registry import DATASETS
train_pipeline_cfg = [
dict(type='VideoInit'),
dict(type='VideoSample', clip_len=16, num_clips=1, test_mode=False),
dict(type='VideoDecode'),
dict(type='VideoResize', r_size=256),
dict(type='VideoCrop', c_size=224),
dict(type='VideoFormat'),
dict(type='VideoPack')
]
val_pipeline_cfg = [
dict(type='VideoInit'),
dict(type='VideoSample', clip_len=16, num_clips=5, test_mode=True),
dict(type='VideoDecode'),
dict(type='VideoResize', r_size=256),
dict(type='VideoCrop', c_size=224),
dict(type='VideoFormat'),
dict(type='VideoPack')
]
train_dataset_cfg = dict(
type='DatasetZelda',
ann_file='kinetics_tiny_train_video.txt',
pipeline=train_pipeline_cfg,
data_root='data/kinetics400_tiny/',
data_prefix=dict(video='train'))
val_dataset_cfg = dict(
type='DatasetZelda',
ann_file='kinetics_tiny_val_video.txt',
pipeline=val_pipeline_cfg,
data_root='data/kinetics400_tiny/',
data_prefix=dict(video='val'))
train_dataset = DATASETS.build(train_dataset_cfg)
packed_results = train_dataset[0]
inputs = packed_results['inputs']
data_sample = packed_results['data_samples']
print('shape of the inputs: ', inputs.shape)
# Get metainfo of the inputs
print('image_shape: ', data_sample.img_shape)
print('num_clips: ', data_sample.num_clips)
print('clip_len: ', data_sample.clip_len)
# Get label of the inputs
print('label: ', data_sample.gt_label)
from mmengine.runner import Runner
BATCH_SIZE = 2
train_dataloader_cfg = dict(
batch_size=BATCH_SIZE,
num_workers=0,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset_cfg)
val_dataloader_cfg = dict(
batch_size=BATCH_SIZE,
num_workers=0,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=val_dataset_cfg)
train_data_loader = Runner.build_dataloader(dataloader=train_dataloader_cfg)
val_data_loader = Runner.build_dataloader(dataloader=val_dataloader_cfg)
batched_packed_results = next(iter(train_data_loader))
batched_inputs = batched_packed_results['inputs']
batched_data_sample = batched_packed_results['data_samples']
assert len(batched_inputs) == BATCH_SIZE
assert len(batched_data_sample) == BATCH_SIZE
The terminal output should be the same as the one shown in the Step1: Build a Pipeline.
Step3: Build a Recognizer¶
Next, we will construct the recognizer
, which mainly consists of three parts: data preprocessor
for batching and normalizing the data, backbone
for feature extraction, and cls_head
for classification.
The implementation of data_preprocessor
is as follows:
import torch
from mmengine.model import BaseDataPreprocessor, stack_batch
from mmaction.registry import MODELS
@MODELS.register_module()
class DataPreprocessorZelda(BaseDataPreprocessor):
def __init__(self, mean, std):
super().__init__()
self.register_buffer(
'mean',
torch.tensor(mean, dtype=torch.float32).view(-1, 1, 1, 1),
False)
self.register_buffer(
'std',
torch.tensor(std, dtype=torch.float32).view(-1, 1, 1, 1),
False)
def forward(self, data, training=False):
data = self.cast_data(data)
inputs = data['inputs']
batch_inputs = stack_batch(inputs) # Batching
batch_inputs = (batch_inputs - self.mean) / self.std # Normalization
data['inputs'] = batch_inputs
return data
Here is the usage of data_preprocessor: feed the batched_packed_results
obtained from the Step2: Build a Dataset and DataLoader into the data_preprocessor
for batching and normalization.
from mmaction.registry import MODELS
data_preprocessor_cfg = dict(
type='DataPreprocessorZelda',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375])
data_preprocessor = MODELS.build(data_preprocessor_cfg)
preprocessed_inputs = data_preprocessor(batched_packed_results)
print(preprocessed_inputs['inputs'].shape)
torch.Size([2, 1, 3, 16, 224, 224])
The implementations of backbone
, cls_head
and recognizer
are as follows:
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModel, BaseModule, Sequential
from mmengine.structures import LabelData
from mmaction.registry import MODELS
@MODELS.register_module()
class BackBoneZelda(BaseModule):
def __init__(self, init_cfg=None):
if init_cfg is None:
init_cfg = [dict(type='Kaiming', layer='Conv3d', mode='fan_out', nonlinearity="relu"),
dict(type='Constant', layer='BatchNorm3d', val=1, bias=0)]
super(BackBoneZelda, self).__init__(init_cfg=init_cfg)
self.conv1 = Sequential(nn.Conv3d(3, 64, kernel_size=(3, 7, 7),
stride=(1, 2, 2), padding=(1, 3, 3)),
nn.BatchNorm3d(64), nn.ReLU())
self.maxpool = nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2),
padding=(0, 1, 1))
self.conv = Sequential(nn.Conv3d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm3d(128), nn.ReLU())
def forward(self, imgs):
# imgs: [batch_size*num_views, 3, T, H, W]
# features: [batch_size*num_views, 128, T/2, H//8, W//8]
features = self.conv(self.maxpool(self.conv1(imgs)))
return features
@MODELS.register_module()
class ClsHeadZelda(BaseModule):
def __init__(self, num_classes, in_channels, dropout=0.5, average_clips='prob', init_cfg=None):
if init_cfg is None:
init_cfg = dict(type='Normal', layer='Linear', std=0.01)
super(ClsHeadZelda, self).__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.in_channels = in_channels
self.average_clips = average_clips
if dropout != 0:
self.dropout = nn.Dropout(dropout)
else:
self.dropout = None
self.fc = nn.Linear(self.in_channels, self.num_classes)
self.pool = nn.AdaptiveAvgPool3d(1)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
N, C, T, H, W = x.shape
x = self.pool(x)
x = x.view(N, C)
assert x.shape[1] == self.in_channels
if self.dropout is not None:
x = self.dropout(x)
cls_scores = self.fc(x)
return cls_scores
def loss(self, feats, data_samples):
cls_scores = self(feats)
labels = torch.stack([x.gt_label for x in data_samples])
labels = labels.squeeze()
if labels.shape == torch.Size([]):
labels = labels.unsqueeze(0)
loss_cls = self.loss_fn(cls_scores, labels)
return dict(loss_cls=loss_cls)
def predict(self, feats, data_samples):
cls_scores = self(feats)
num_views = cls_scores.shape[0] // len(data_samples)
# assert num_views == data_samples[0].num_clips
cls_scores = self.average_clip(cls_scores, num_views)
for ds, sc in zip(data_samples, cls_scores):
pred = LabelData(item=sc)
ds.pred_scores = pred
return data_samples
def average_clip(self, cls_scores, num_views):
if self.average_clips not in ['score', 'prob', None]:
raise ValueError(f'{self.average_clips} is not supported. '
f'Currently supported ones are '
f'["score", "prob", None]')
total_views = cls_scores.shape[0]
cls_scores = cls_scores.view(total_views // num_views, num_views, -1)
if self.average_clips is None:
return cls_scores
elif self.average_clips == 'prob':
cls_scores = F.softmax(cls_scores, dim=2).mean(dim=1)
elif self.average_clips == 'score':
cls_scores = cls_scores.mean(dim=1)
return cls_scores
@MODELS.register_module()
class RecognizerZelda(BaseModel):
def __init__(self, backbone, cls_head, data_preprocessor):
super().__init__(data_preprocessor=data_preprocessor)
self.backbone = MODELS.build(backbone)
self.cls_head = MODELS.build(cls_head)
def extract_feat(self, inputs):
inputs = inputs.view((-1, ) + inputs.shape[2:])
return self.backbone(inputs)
def loss(self, inputs, data_samples):
feats = self.extract_feat(inputs)
loss = self.cls_head.loss(feats, data_samples)
return loss
def predict(self, inputs, data_samples):
feats = self.extract_feat(inputs)
predictions = self.cls_head.predict(feats, data_samples)
return predictions
def forward(self, inputs, data_samples=None, mode='tensor'):
if mode == 'tensor':
return self.extract_feat(inputs)
elif mode == 'loss':
return self.loss(inputs, data_samples)
elif mode == 'predict':
return self.predict(inputs, data_samples)
else:
raise RuntimeError(f'Invalid mode: {mode}')
The init_cfg
is used for model weight initialization. For more information on model weight initialization, please refer to MMEngine Tutorial. The usage of the above modules is as follows:
import torch
import copy
from mmaction.registry import MODELS
model_cfg = dict(
type='RecognizerZelda',
backbone=dict(type='BackBoneZelda'),
cls_head=dict(
type='ClsHeadZelda',
num_classes=2,
in_channels=128,
average_clips='prob'),
data_preprocessor = dict(
type='DataPreprocessorZelda',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))
model = MODELS.build(model_cfg)
# Train
model.train()
model.init_weights()
data_batch_train = copy.deepcopy(batched_packed_results)
data = model.data_preprocessor(data_batch_train, training=True)
loss = model(**data, mode='loss')
print('loss dict: ', loss)
# Test
with torch.no_grad():
model.eval()
data_batch_test = copy.deepcopy(batched_packed_results)
data = model.data_preprocessor(data_batch_test, training=False)
predictions = model(**data, mode='predict')
print('Label of Sample[0]', predictions[0].gt_label)
print('Scores of Sample[0]', predictions[0].pred_score)
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.0.weight - torch.Size([64, 3, 3, 7, 7]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.0.bias - torch.Size([64]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
backbone.conv1.1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
backbone.conv.0.weight - torch.Size([128, 64, 3, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv.0.bias - torch.Size([128]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
04/03 23:28:01 - mmengine - INFO -
backbone.conv.1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
backbone.conv.1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of RecognizerZelda
04/03 23:28:01 - mmengine - INFO -
cls_head.fc.weight - torch.Size([2, 128]):
NormalInit: mean=0, std=0.01, bias=0
04/03 23:28:01 - mmengine - INFO -
cls_head.fc.bias - torch.Size([2]):
NormalInit: mean=0, std=0.01, bias=0
loss dict: {'loss_cls': tensor(0.6853, grad_fn=<NllLossBackward0>)}
Label of Sample[0] tensor([0])
Scores of Sample[0] tensor([0.5240, 0.4760])
Step4: Build a Evaluation Metric¶
Note that all Metric
classes in OpenMMLab
must inherit from the BaseMetric
class in mmengine
and implement the abstract methods, process
and compute_metrics
. For more information on evaluation, please refer to MMEngine Tutorial.
import copy
from collections import OrderedDict
from mmengine.evaluator import BaseMetric
from mmaction.evaluation import top_k_accuracy
from mmaction.registry import METRICS
@METRICS.register_module()
class AccuracyMetric(BaseMetric):
def __init__(self, topk=(1, 5), collect_device='cpu', prefix='acc'):
super().__init__(collect_device=collect_device, prefix=prefix)
self.topk = topk
def process(self, data_batch, data_samples):
data_samples = copy.deepcopy(data_samples)
for data_sample in data_samples:
result = dict()
scores = data_sample['pred_score'].cpu().numpy()
label = data_sample['gt_label'].item()
result['scores'] = scores
result['label'] = label
self.results.append(result)
def compute_metrics(self, results: list) -> dict:
eval_results = OrderedDict()
labels = [res['label'] for res in results]
scores = [res['scores'] for res in results]
topk_acc = top_k_accuracy(scores, labels, self.topk)
for k, acc in zip(self.topk, topk_acc):
eval_results[f'topk{k}'] = acc
return eval_results
from mmaction.registry import METRICS
metric_cfg = dict(type='AccuracyMetric', topk=(1, 5))
metric = METRICS.build(metric_cfg)
data_samples = [d.to_dict() for d in predictions]
metric.process(batched_packed_results, data_samples)
acc = metric.compute_metrics(metric.results)
print(acc)
OrderedDict([('topk1', 0.5), ('topk5', 1.0)])
Step5: Train and Test with Native PyTorch¶
import torch.optim as optim
from mmengine import track_iter_progress
device = 'cuda' # or 'cpu'
max_epochs = 10
optimizer = optim.Adam(model.parameters(), lr=0.01)
for epoch in range(max_epochs):
model.train()
losses = []
for data_batch in track_iter_progress(train_data_loader):
data = model.data_preprocessor(data_batch, training=True)
loss_dict = model(**data, mode='loss')
loss = loss_dict['loss_cls']
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())
print(f'Epoch[{epoch}]: loss ', sum(losses) / len(train_data_loader))
with torch.no_grad():
model.eval()
for data_batch in track_iter_progress(val_data_loader):
data = model.data_preprocessor(data_batch, training=False)
predictions = model(**data, mode='predict')
data_samples = [d.to_dict() for d in predictions]
metric.process(data_batch, data_samples)
acc = metric.acc = metric.compute_metrics(metric.results)
for name, topk in acc.items():
print(f'{name}: ', topk)
Step6: Train and Test with MMEngine (Recommended)¶
For more details on training and testing, you can refer to MMAction2 Tutorial. For more information on Runner
, please refer to MMEngine Tutorial.
from mmengine.runner import Runner
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10, val_interval=1)
val_cfg = dict(type='ValLoop')
optim_wrapper = dict(optimizer=dict(type='Adam', lr=0.01))
runner = Runner(model=model_cfg, work_dir='./work_dirs/guide',
train_dataloader=train_dataloader_cfg,
train_cfg=train_cfg,
val_dataloader=val_dataloader_cfg,
val_cfg=val_cfg,
optim_wrapper=optim_wrapper,
val_evaluator=[metric_cfg],
default_scope='mmaction')
runner.train()