Finetuning Models¶
This tutorial provides instructions for users to use the pre-trained models to finetune them on other datasets, so that better performance can be achieved.
Outline¶
There are two steps to finetune a model on a new dataset.
Add support for the new dataset. See Prepare Dataset and Customize Dataset.
Modify the configs. This will be discussed in this tutorial.
Choose Template Config¶
Here, we would like to take configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py
as an example. We first copy this config file to the same folder and rename it to tsn_ucf101.py
, then four parts in the config need attention, specifically, add new keys for non-existing keys and modify the original keys for existing keys.
Modify Head¶
The num_classes
in the cls_head
need to be changed to the class number of the new dataset.
The weights of the pre-trained models are reused except for the final prediction layer.
So it is safe to change the class number.
In our case, UCF101 has 101 classes.
So we change it from 400 (class number of Kinetics-400) to 101.
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101 # change from 400 to 101
))
Modify Dataset¶
MMAction2 supports UCF101, Kinetics-400, Moments in Time, Multi-Moments in Time, THUMOS14,
Something-Something V1&V2, ActivityNet Dataset.
The users may need to adapt one of the above datasets to fit their special datasets.
You could refer to Prepare Dataset and Customize Dataset for more details.
In our case, UCF101 is already supported by various dataset types, like VideoDataset
,
so we change the config as follows.
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
Modify Training Schedule¶
Finetuning usually requires a smaller learning rate and fewer training epochs.
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # change from 100 to 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning policy
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # change from 100 to 50
by_epoch=True,
milestones=[20, 40], # change milestones
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # change from 0.01 to 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
Use Pre-Trained Model¶
To use the pre-trained model for the whole network, the new config adds the link of pre-trained models in the load_from
.
We set load_from=None
as default in configs/_base_/default_runtime.py
and owing to inheritance design, users can directly change it by setting load_from
in their configs.
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth' # model path can be found in model zoo
Start Training¶
Now, we have finished the fine-tuning config file as follows:
_base_ = [
'../../_base_/models/tsn_r50.py', '../../_base_/schedules/sgd_100e.py',
'../../_base_/default_runtime.py'
]
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101 # change from 400 to 101
))
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=3,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='TenCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # change from 100 to 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning policy
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # change from 100 to 50
by_epoch=True,
milestones=[20, 40], # change milestones
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # change from 0.01 to 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
val_evaluator = dict(type='AccMetric')
test_evaluator = val_evaluator
default_hooks = dict(checkpoint=dict(interval=3, max_keep_ckpts=3))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (32 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=256)
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'
An easier way is to inherit the kinetics400 config and only specify the modified keys. Please make sure that the custom config is in the same folder with configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py
.
_base_ = [
'tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py' # inherit template config
]
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101)) # change from 400 to 101
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
train_dataloader = dict(
dataset=dict(
ann_file=ann_file_train,
data_prefix=dict(video=data_root)))
val_dataloader = dict(
dataset=dict(
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val)))
test_dataloader = dict(
dataset=dict(
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val)))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # change from 100 to 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # change from 100 to 50
by_epoch=True,
milestones=[20, 40], # change milestones
gamma=0.1)
]
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # change from 0.01 to 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'
You can use the following command to finetune a model on your dataset.
python tools/train.py ${CONFIG_FILE} [optional arguments]
Example: train the TSN model on Kinetics-400 dataset in a deterministic option.
python tools/train.py configs/recognition/tsn/tsn_ucf101.py \
--seed=0 --deterministic
For more details, you can refer to the Training part in the Training and Test Tutorial.