Shortcuts

Source code for mmaction.datasets.transforms.processing

# Copyright (c) OpenMMLab. All rights reserved.
import random
import warnings
from numbers import Number
from typing import Sequence

import cv2
import mmcv
import mmengine
import numpy as np
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from torch.nn.modules.utils import _pair

from mmaction.registry import TRANSFORMS


def _combine_quadruple(a, b):
    return a[0] + a[2] * b[0], a[1] + a[3] * b[1], a[2] * b[2], a[3] * b[3]


def _flip_quadruple(a):
    return 1 - a[0] - a[2], a[1], a[2], a[3]


def _init_lazy_if_proper(results, lazy):
    """Initialize lazy operation properly.

    Make sure that a lazy operation is properly initialized,
    and avoid a non-lazy operation accidentally getting mixed in.

    Required keys in results are "imgs" if "img_shape" not in results,
    otherwise, Required keys in results are "img_shape", add or modified keys
    are "img_shape", "lazy".
    Add or modified keys in "lazy" are "original_shape", "crop_bbox", "flip",
    "flip_direction", "interpolation".

    Args:
        results (dict): A dict stores data pipeline result.
        lazy (bool): Determine whether to apply lazy operation. Default: False.
    """

    if 'img_shape' not in results:
        results['img_shape'] = results['imgs'][0].shape[:2]
    if lazy:
        if 'lazy' not in results:
            img_h, img_w = results['img_shape']
            lazyop = dict()
            lazyop['original_shape'] = results['img_shape']
            lazyop['crop_bbox'] = np.array([0, 0, img_w, img_h],
                                           dtype=np.float32)
            lazyop['flip'] = False
            lazyop['flip_direction'] = None
            lazyop['interpolation'] = None
            results['lazy'] = lazyop
    else:
        assert 'lazy' not in results, 'Use Fuse after lazy operations'


[docs]@TRANSFORMS.register_module() class Fuse(BaseTransform): """Fuse lazy operations. Fusion order: crop -> resize -> flip Required keys are "imgs", "img_shape" and "lazy", added or modified keys are "imgs", "lazy". Required keys in "lazy" are "crop_bbox", "interpolation", "flip_direction". """
[docs] def transform(self, results): """Fuse lazy operations. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ if 'lazy' not in results: raise ValueError('No lazy operation detected') lazyop = results['lazy'] imgs = results['imgs'] # crop left, top, right, bottom = lazyop['crop_bbox'].round().astype(int) imgs = [img[top:bottom, left:right] for img in imgs] # resize img_h, img_w = results['img_shape'] if lazyop['interpolation'] is None: interpolation = 'bilinear' else: interpolation = lazyop['interpolation'] imgs = [ mmcv.imresize(img, (img_w, img_h), interpolation=interpolation) for img in imgs ] # flip if lazyop['flip']: for img in imgs: mmcv.imflip_(img, lazyop['flip_direction']) results['imgs'] = imgs del results['lazy'] return results
[docs]@TRANSFORMS.register_module() class RandomCrop(BaseTransform): """Vanilla square random crop that specifics the output size. Required keys in results are "img_shape", "keypoint" (optional), "imgs" (optional), added or modified keys are "keypoint", "imgs", "lazy"; Required keys in "lazy" are "flip", "crop_bbox", added or modified key is "crop_bbox". Args: size (int): The output size of the images. lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, size, lazy=False): if not isinstance(size, int): raise TypeError(f'Size must be an int, but got {type(size)}') self.size = size self.lazy = lazy @staticmethod def _crop_kps(kps, crop_bbox): """Static method for cropping keypoint.""" return kps - crop_bbox[:2] @staticmethod def _crop_imgs(imgs, crop_bbox): """Static method for cropping images.""" x1, y1, x2, y2 = crop_bbox return [img[y1:y2, x1:x2] for img in imgs] @staticmethod def _box_crop(box, crop_bbox): """Crop the bounding boxes according to the crop_bbox. Args: box (np.ndarray): The bounding boxes. crop_bbox(np.ndarray): The bbox used to crop the original image. """ x1, y1, x2, y2 = crop_bbox img_w, img_h = x2 - x1, y2 - y1 box_ = box.copy() box_[..., 0::2] = np.clip(box[..., 0::2] - x1, 0, img_w - 1) box_[..., 1::2] = np.clip(box[..., 1::2] - y1, 0, img_h - 1) return box_ def _all_box_crop(self, results, crop_bbox): """Crop the gt_bboxes and proposals in results according to crop_bbox. Args: results (dict): All information about the sample, which contain 'gt_bboxes' and 'proposals' (optional). crop_bbox(np.ndarray): The bbox used to crop the original image. """ results['gt_bboxes'] = self._box_crop(results['gt_bboxes'], crop_bbox) if 'proposals' in results and results['proposals'] is not None: assert results['proposals'].shape[1] == 4 results['proposals'] = self._box_crop(results['proposals'], crop_bbox) return results
[docs] def transform(self, results): """Performs the RandomCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] assert self.size <= img_h and self.size <= img_w y_offset = 0 x_offset = 0 if img_h > self.size: y_offset = int(np.random.randint(0, img_h - self.size)) if img_w > self.size: x_offset = int(np.random.randint(0, img_w - self.size)) if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = x_offset / img_w, y_offset / img_h w_ratio, h_ratio = self.size / img_w, self.size / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) new_h, new_w = self.size, self.size crop_bbox = np.array( [x_offset, y_offset, x_offset + new_w, y_offset + new_h]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = x_offset * (lazy_right - lazy_left) / img_w right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w top = y_offset * (lazy_bottom - lazy_top) / img_h bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) # Process entity boxes if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results
def __repr__(self): repr_str = (f'{self.__class__.__name__}(size={self.size}, ' f'lazy={self.lazy})') return repr_str
[docs]@TRANSFORMS.register_module() class RandomResizedCrop(RandomCrop): """Random crop that specifics the area and height-weight ratio range. Required keys in results are "img_shape", "crop_bbox", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "keypoint", "crop_bbox" and "lazy"; Required keys in "lazy" are "flip", "crop_bbox", added or modified key is "crop_bbox". Args: area_range (Tuple[float]): The candidate area scales range of output cropped images. Default: (0.08, 1.0). aspect_ratio_range (Tuple[float]): The candidate aspect ratio range of output cropped images. Default: (3 / 4, 4 / 3). lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, area_range=(0.08, 1.0), aspect_ratio_range=(3 / 4, 4 / 3), lazy=False): self.area_range = area_range self.aspect_ratio_range = aspect_ratio_range self.lazy = lazy if not mmengine.is_tuple_of(self.area_range, float): raise TypeError(f'Area_range must be a tuple of float, ' f'but got {type(area_range)}') if not mmengine.is_tuple_of(self.aspect_ratio_range, float): raise TypeError(f'Aspect_ratio_range must be a tuple of float, ' f'but got {type(aspect_ratio_range)}')
[docs] @staticmethod def get_crop_bbox(img_shape, area_range, aspect_ratio_range, max_attempts=10): """Get a crop bbox given the area range and aspect ratio range. Args: img_shape (Tuple[int]): Image shape area_range (Tuple[float]): The candidate area scales range of output cropped images. Default: (0.08, 1.0). aspect_ratio_range (Tuple[float]): The candidate aspect ratio range of output cropped images. Default: (3 / 4, 4 / 3). max_attempts (int): The maximum of attempts. Default: 10. max_attempts (int): Max attempts times to generate random candidate bounding box. If it doesn't qualified one, the center bounding box will be used. Returns: (list[int]) A random crop bbox within the area range and aspect ratio range. """ assert 0 < area_range[0] <= area_range[1] <= 1 assert 0 < aspect_ratio_range[0] <= aspect_ratio_range[1] img_h, img_w = img_shape area = img_h * img_w min_ar, max_ar = aspect_ratio_range aspect_ratios = np.exp( np.random.uniform( np.log(min_ar), np.log(max_ar), size=max_attempts)) target_areas = np.random.uniform(*area_range, size=max_attempts) * area candidate_crop_w = np.round(np.sqrt(target_areas * aspect_ratios)).astype(np.int32) candidate_crop_h = np.round(np.sqrt(target_areas / aspect_ratios)).astype(np.int32) for i in range(max_attempts): crop_w = candidate_crop_w[i] crop_h = candidate_crop_h[i] if crop_h <= img_h and crop_w <= img_w: x_offset = random.randint(0, img_w - crop_w) y_offset = random.randint(0, img_h - crop_h) return x_offset, y_offset, x_offset + crop_w, y_offset + crop_h # Fallback crop_size = min(img_h, img_w) x_offset = (img_w - crop_size) // 2 y_offset = (img_h - crop_size) // 2 return x_offset, y_offset, x_offset + crop_size, y_offset + crop_size
[docs] def transform(self, results): """Performs the RandomResizeCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] left, top, right, bottom = self.get_crop_bbox( (img_h, img_w), self.area_range, self.aspect_ratio_range) new_h, new_w = bottom - top, right - left if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = left / img_w, top / img_h w_ratio, h_ratio = new_w / img_w, new_h / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) crop_bbox = np.array([left, top, right, bottom]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = left * (lazy_right - lazy_left) / img_w right = right * (lazy_right - lazy_left) / img_w top = top * (lazy_bottom - lazy_top) / img_h bottom = bottom * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results
def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'area_range={self.area_range}, ' f'aspect_ratio_range={self.aspect_ratio_range}, ' f'lazy={self.lazy})') return repr_str
[docs]@TRANSFORMS.register_module() class MultiScaleCrop(RandomCrop): """Crop images with a list of randomly selected scales. Randomly select the w and h scales from a list of scales. Scale of 1 means the base size, which is the minimal of image width and height. The scale level of w and h is controlled to be smaller than a certain value to prevent too large or small aspect ratio. Required keys are "img_shape", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "crop_bbox", "img_shape", "lazy" and "scales". Required keys in "lazy" are "crop_bbox", added or modified key is "crop_bbox". Args: input_size (int | tuple[int]): (w, h) of network input. scales (tuple[float]): width and height scales to be selected. max_wh_scale_gap (int): Maximum gap of w and h scale levels. Default: 1. random_crop (bool): If set to True, the cropping bbox will be randomly sampled, otherwise it will be sampler from fixed regions. Default: False. num_fixed_crops (int): If set to 5, the cropping bbox will keep 5 basic fixed regions: "upper left", "upper right", "lower left", "lower right", "center". If set to 13, the cropping bbox will append another 8 fix regions: "center left", "center right", "lower center", "upper center", "upper left quarter", "upper right quarter", "lower left quarter", "lower right quarter". Default: 5. lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, input_size, scales=(1, ), max_wh_scale_gap=1, random_crop=False, num_fixed_crops=5, lazy=False): self.input_size = _pair(input_size) if not mmengine.is_tuple_of(self.input_size, int): raise TypeError(f'Input_size must be int or tuple of int, ' f'but got {type(input_size)}') if not isinstance(scales, tuple): raise TypeError(f'Scales must be tuple, but got {type(scales)}') if num_fixed_crops not in [5, 13]: raise ValueError(f'Num_fix_crops must be in {[5, 13]}, ' f'but got {num_fixed_crops}') self.scales = scales self.max_wh_scale_gap = max_wh_scale_gap self.random_crop = random_crop self.num_fixed_crops = num_fixed_crops self.lazy = lazy
[docs] def transform(self, results): """Performs the MultiScaleCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] base_size = min(img_h, img_w) crop_sizes = [int(base_size * s) for s in self.scales] candidate_sizes = [] for i, h in enumerate(crop_sizes): for j, w in enumerate(crop_sizes): if abs(i - j) <= self.max_wh_scale_gap: candidate_sizes.append([w, h]) crop_size = random.choice(candidate_sizes) for i in range(2): if abs(crop_size[i] - self.input_size[i]) < 3: crop_size[i] = self.input_size[i] crop_w, crop_h = crop_size if self.random_crop: x_offset = random.randint(0, img_w - crop_w) y_offset = random.randint(0, img_h - crop_h) else: w_step = (img_w - crop_w) // 4 h_step = (img_h - crop_h) // 4 candidate_offsets = [ (0, 0), # upper left (4 * w_step, 0), # upper right (0, 4 * h_step), # lower left (4 * w_step, 4 * h_step), # lower right (2 * w_step, 2 * h_step), # center ] if self.num_fixed_crops == 13: extra_candidate_offsets = [ (0, 2 * h_step), # center left (4 * w_step, 2 * h_step), # center right (2 * w_step, 4 * h_step), # lower center (2 * w_step, 0 * h_step), # upper center (1 * w_step, 1 * h_step), # upper left quarter (3 * w_step, 1 * h_step), # upper right quarter (1 * w_step, 3 * h_step), # lower left quarter (3 * w_step, 3 * h_step) # lower right quarter ] candidate_offsets.extend(extra_candidate_offsets) x_offset, y_offset = random.choice(candidate_offsets) new_h, new_w = crop_h, crop_w crop_bbox = np.array( [x_offset, y_offset, x_offset + new_w, y_offset + new_h]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) results['scales'] = self.scales if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = x_offset / img_w, y_offset / img_h w_ratio, h_ratio = new_w / img_w, new_h / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = x_offset * (lazy_right - lazy_left) / img_w right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w top = y_offset * (lazy_bottom - lazy_top) / img_h bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results
def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'input_size={self.input_size}, scales={self.scales}, ' f'max_wh_scale_gap={self.max_wh_scale_gap}, ' f'random_crop={self.random_crop}, ' f'num_fixed_crops={self.num_fixed_crops}, ' f'lazy={self.lazy})') return repr_str
[docs]@TRANSFORMS.register_module() class Resize(BaseTransform): """Resize images to a specific size. Required keys are "img_shape", "modality", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "img_shape", "keep_ratio", "scale_factor", "lazy", "resize_size". Required keys in "lazy" is None, added or modified key is "interpolation". Args: scale (float | Tuple[int]): If keep_ratio is True, it serves as scaling factor or maximum size: If it is a float number, the image will be rescaled by this factor, else if it is a tuple of 2 integers, the image will be rescaled as large as possible within the scale. Otherwise, it serves as (w, h) of output size. keep_ratio (bool): If set to True, Images will be resized without changing the aspect ratio. Otherwise, it will resize images to a given size. Default: True. interpolation (str): Algorithm used for interpolation, accepted values are "nearest", "bilinear", "bicubic", "area", "lanczos". Default: "bilinear". lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, scale, keep_ratio=True, interpolation='bilinear', lazy=False): if isinstance(scale, float): if scale <= 0: raise ValueError(f'Invalid scale {scale}, must be positive.') elif isinstance(scale, tuple): max_long_edge = max(scale) max_short_edge = min(scale) if max_short_edge == -1: # assign np.inf to long edge for rescaling short edge later. scale = (np.inf, max_long_edge) else: raise TypeError( f'Scale must be float or tuple of int, but got {type(scale)}') self.scale = scale self.keep_ratio = keep_ratio self.interpolation = interpolation self.lazy = lazy def _resize_imgs(self, imgs, new_w, new_h): """Static method for resizing keypoint.""" return [ mmcv.imresize( img, (new_w, new_h), interpolation=self.interpolation) for img in imgs ] @staticmethod def _resize_kps(kps, scale_factor): """Static method for resizing keypoint.""" return kps * scale_factor @staticmethod def _box_resize(box, scale_factor): """Rescale the bounding boxes according to the scale_factor. Args: box (np.ndarray): The bounding boxes. scale_factor (np.ndarray): The scale factor used for rescaling. """ assert len(scale_factor) == 2 scale_factor = np.concatenate([scale_factor, scale_factor]) return box * scale_factor
[docs] def transform(self, results): """Performs the Resize augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') if 'scale_factor' not in results: results['scale_factor'] = np.array([1, 1], dtype=np.float32) img_h, img_w = results['img_shape'] if self.keep_ratio: new_w, new_h = mmcv.rescale_size((img_w, img_h), self.scale) else: new_w, new_h = self.scale self.scale_factor = np.array([new_w / img_w, new_h / img_h], dtype=np.float32) results['img_shape'] = (new_h, new_w) results['keep_ratio'] = self.keep_ratio results['scale_factor'] = results['scale_factor'] * self.scale_factor if not self.lazy: if 'imgs' in results: results['imgs'] = self._resize_imgs(results['imgs'], new_w, new_h) if 'keypoint' in results: results['keypoint'] = self._resize_kps(results['keypoint'], self.scale_factor) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') lazyop['interpolation'] = self.interpolation if 'gt_bboxes' in results: assert not self.lazy results['gt_bboxes'] = self._box_resize(results['gt_bboxes'], self.scale_factor) if 'proposals' in results and results['proposals'] is not None: assert results['proposals'].shape[1] == 4 results['proposals'] = self._box_resize( results['proposals'], self.scale_factor) return results
def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'scale={self.scale}, keep_ratio={self.keep_ratio}, ' f'interpolation={self.interpolation}, ' f'lazy={self.lazy})') return repr_str
[docs]@TRANSFORMS.register_module() class RandomRescale(BaseTransform): """Randomly resize images so that the short_edge is resized to a specific size in a given range. The scale ratio is unchanged after resizing. Required keys are "imgs", "img_shape", "modality", added or modified keys are "imgs", "img_shape", "keep_ratio", "scale_factor", "resize_size", "short_edge". Args: scale_range (tuple[int]): The range of short edge length. A closed interval. interpolation (str): Algorithm used for interpolation: "nearest" | "bilinear". Default: "bilinear". """ def __init__(self, scale_range, interpolation='bilinear'): self.scale_range = scale_range # make sure scale_range is legal, first make sure the type is OK assert mmengine.is_tuple_of(scale_range, int) assert len(scale_range) == 2 assert scale_range[0] < scale_range[1] assert np.all([x > 0 for x in scale_range]) self.keep_ratio = True self.interpolation = interpolation
[docs] def transform(self, results): """Performs the Resize augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ short_edge = np.random.randint(self.scale_range[0], self.scale_range[1] + 1) resize = Resize((-1, short_edge), keep_ratio=True, interpolation=self.interpolation, lazy=False) results = resize(results) results['short_edge'] = short_edge return results
def __repr__(self): scale_range = self.scale_range repr_str = (f'{self.__class__.__name__}(' f'scale_range=({scale_range[0]}, {scale_range[1]}), ' f'interpolation={self.interpolation})') return repr_str
[docs]@TRANSFORMS.register_module() class Flip(BaseTransform): """Flip the input images with a probability. Reverse the order of elements in the given imgs with a specific direction. The shape of the imgs is preserved, but the elements are reordered. Required keys are "img_shape", "modality", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "keypoint", "lazy" and "flip_direction". Required keys in "lazy" is None, added or modified key are "flip" and "flip_direction". The Flip augmentation should be placed after any cropping / reshaping augmentations, to make sure crop_quadruple is calculated properly. Args: flip_ratio (float): Probability of implementing flip. Default: 0.5. direction (str): Flip imgs horizontally or vertically. Options are "horizontal" | "vertical". Default: "horizontal". flip_label_map (Dict[int, int] | None): Transform the label of the flipped image with the specific label. Default: None. left_kp (list[int]): Indexes of left keypoints, used to flip keypoints. Default: None. right_kp (list[ind]): Indexes of right keypoints, used to flip keypoints. Default: None. lazy (bool): Determine whether to apply lazy operation. Default: False. """ _directions = ['horizontal', 'vertical'] def __init__(self, flip_ratio=0.5, direction='horizontal', flip_label_map=None, left_kp=None, right_kp=None, lazy=False): if direction not in self._directions: raise ValueError(f'Direction {direction} is not supported. ' f'Currently support ones are {self._directions}') self.flip_ratio = flip_ratio self.direction = direction self.flip_label_map = flip_label_map self.left_kp = left_kp self.right_kp = right_kp self.lazy = lazy def _flip_imgs(self, imgs, modality): """Utility function for flipping images.""" _ = [mmcv.imflip_(img, self.direction) for img in imgs] lt = len(imgs) if modality == 'Flow': # The 1st frame of each 2 frames is flow-x for i in range(0, lt, 2): imgs[i] = mmcv.iminvert(imgs[i]) return imgs def _flip_kps(self, kps, kpscores, img_width): """Utility function for flipping keypoint.""" kp_x = kps[..., 0] kp_x[kp_x != 0] = img_width - kp_x[kp_x != 0] new_order = list(range(kps.shape[2])) if self.left_kp is not None and self.right_kp is not None: for left, right in zip(self.left_kp, self.right_kp): new_order[left] = right new_order[right] = left kps = kps[:, :, new_order] if kpscores is not None: kpscores = kpscores[:, :, new_order] return kps, kpscores @staticmethod def _box_flip(box, img_width): """Flip the bounding boxes given the width of the image. Args: box (np.ndarray): The bounding boxes. img_width (int): The img width. """ box_ = box.copy() box_[..., 0::4] = img_width - box[..., 2::4] box_[..., 2::4] = img_width - box[..., 0::4] return box_
[docs] def transform(self, results): """Performs the Flip augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') assert self.direction == 'horizontal', ( 'Only horizontal flips are' 'supported for human keypoints') modality = results['modality'] if modality == 'Flow': assert self.direction == 'horizontal' flip = np.random.rand() < self.flip_ratio results['flip'] = flip results['flip_direction'] = self.direction img_width = results['img_shape'][1] if self.flip_label_map is not None and flip: results['label'] = self.flip_label_map.get(results['label'], results['label']) if not self.lazy: if flip: if 'imgs' in results: results['imgs'] = self._flip_imgs(results['imgs'], modality) if 'keypoint' in results: kp = results['keypoint'] kpscore = results.get('keypoint_score', None) kp, kpscore = self._flip_kps(kp, kpscore, img_width) results['keypoint'] = kp if 'keypoint_score' in results: results['keypoint_score'] = kpscore else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Use one Flip please') lazyop['flip'] = flip lazyop['flip_direction'] = self.direction if 'gt_bboxes' in results and flip: assert not self.lazy and self.direction == 'horizontal' width = results['img_shape'][1] results['gt_bboxes'] = self._box_flip(results['gt_bboxes'], width) if 'proposals' in results and results['proposals'] is not None: assert results['proposals'].shape[1] == 4 results['proposals'] = self._box_flip(results['proposals'], width) return results
def __repr__(self): repr_str = ( f'{self.__class__.__name__}(' f'flip_ratio={self.flip_ratio}, direction={self.direction}, ' f'flip_label_map={self.flip_label_map}, lazy={self.lazy})') return repr_str
[docs]@TRANSFORMS.register_module() class ColorJitter(BaseTransform): """Perform ColorJitter to each img. Required keys are "imgs", added or modified keys are "imgs". Args: brightness (float | tuple[float]): The jitter range for brightness, if set as a float, the range will be (1 - brightness, 1 + brightness). Default: 0.5. contrast (float | tuple[float]): The jitter range for contrast, if set as a float, the range will be (1 - contrast, 1 + contrast). Default: 0.5. saturation (float | tuple[float]): The jitter range for saturation, if set as a float, the range will be (1 - saturation, 1 + saturation). Default: 0.5. hue (float | tuple[float]): The jitter range for hue, if set as a float, the range will be (-hue, hue). Default: 0.1. """ @staticmethod def check_input(val, max, base): if isinstance(val, tuple): assert base - max <= val[0] <= val[1] <= base + max return val assert val <= max return (base - val, base + val) @staticmethod def rgb_to_grayscale(img): return 0.2989 * img[..., 0] + 0.587 * img[..., 1] + 0.114 * img[..., 2] @staticmethod def adjust_contrast(img, factor): val = np.mean(ColorJitter.rgb_to_grayscale(img)) return factor * img + (1 - factor) * val @staticmethod def adjust_saturation(img, factor): gray = np.stack([ColorJitter.rgb_to_grayscale(img)] * 3, axis=-1) return factor * img + (1 - factor) * gray @staticmethod def adjust_hue(img, factor): img = np.clip(img, 0, 255).astype(np.uint8) hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) offset = int(factor * 255) hsv[..., 0] = (hsv[..., 0] + offset) % 180 img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) return img.astype(np.float32) def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1): self.brightness = self.check_input(brightness, 1, 1) self.contrast = self.check_input(contrast, 1, 1) self.saturation = self.check_input(saturation, 1, 1) self.hue = self.check_input(hue, 0.5, 0) self.fn_idx = np.random.permutation(4)
[docs] def transform(self, results): """Perform ColorJitter. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ imgs = results['imgs'] num_clips, clip_len = 1, len(imgs) new_imgs = [] for i in range(num_clips): b = np.random.uniform( low=self.brightness[0], high=self.brightness[1]) c = np.random.uniform(low=self.contrast[0], high=self.contrast[1]) s = np.random.uniform( low=self.saturation[0], high=self.saturation[1]) h = np.random.uniform(low=self.hue[0], high=self.hue[1]) start, end = i * clip_len, (i + 1) * clip_len for img in imgs[start:end]: img = img.astype(np.float32) for fn_id in self.fn_idx: if fn_id == 0 and b != 1: img *= b if fn_id == 1 and c != 1: img = self.adjust_contrast(img, c) if fn_id == 2 and s != 1: img = self.adjust_saturation(img, s) if fn_id == 3 and h != 0: img = self.adjust_hue(img, h) img = np.clip(img, 0, 255).astype(np.uint8) new_imgs.append(img) results['imgs'] = new_imgs return results
def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'brightness={self.brightness}, ' f'contrast={self.contrast}, ' f'saturation={self.saturation}, ' f'hue={self.hue})') return repr_str
[docs]@TRANSFORMS.register_module() class CenterCrop(RandomCrop): """Crop the center area from images. Required keys are "img_shape", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "keypoint", "crop_bbox", "lazy" and "img_shape". Required keys in "lazy" is "crop_bbox", added or modified key is "crop_bbox". Args: crop_size (int | tuple[int]): (w, h) of crop size. lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, crop_size, lazy=False): self.crop_size = _pair(crop_size) self.lazy = lazy if not mmengine.is_tuple_of(self.crop_size, int): raise TypeError(f'Crop_size must be int or tuple of int, ' f'but got {type(crop_size)}')
[docs] def transform(self, results): """Performs the CenterCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] crop_w, crop_h = self.crop_size left = (img_w - crop_w) // 2 top = (img_h - crop_h) // 2 right = left + crop_w bottom = top + crop_h new_h, new_w = bottom - top, right - left crop_bbox = np.array([left, top, right, bottom]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = left / img_w, top / img_h w_ratio, h_ratio = new_w / img_w, new_h / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = left * (lazy_right - lazy_left) / img_w right = right * (lazy_right - lazy_left) / img_w top = top * (lazy_bottom - lazy_top) / img_h bottom = bottom * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results
def __repr__(self): repr_str = (f'{self.__class__.__name__}(crop_size={self.crop_size}, ' f'lazy={self.lazy})') return repr_str
[docs]@TRANSFORMS.register_module() class ThreeCrop(BaseTransform): """Crop images into three crops. Crop the images equally into three crops with equal intervals along the shorter side. Required keys are "imgs", "img_shape", added or modified keys are "imgs", "crop_bbox" and "img_shape". Args: crop_size(int | tuple[int]): (w, h) of crop size. """ def __init__(self, crop_size): self.crop_size = _pair(crop_size) if not mmengine.is_tuple_of(self.crop_size, int): raise TypeError(f'Crop_size must be int or tuple of int, ' f'but got {type(crop_size)}')
[docs] def transform(self, results): """Performs the ThreeCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, False) if 'gt_bboxes' in results or 'proposals' in results: warnings.warn('ThreeCrop cannot process bounding boxes') imgs = results['imgs'] img_h, img_w = results['imgs'][0].shape[:2] crop_w, crop_h = self.crop_size assert crop_h == img_h or crop_w == img_w if crop_h == img_h: w_step = (img_w - crop_w) // 2 offsets = [ (0, 0), # left (2 * w_step, 0), # right (w_step, 0), # middle ] elif crop_w == img_w: h_step = (img_h - crop_h) // 2 offsets = [ (0, 0), # top (0, 2 * h_step), # down (0, h_step), # middle ] cropped = [] crop_bboxes = [] for x_offset, y_offset in offsets: bbox = [x_offset, y_offset, x_offset + crop_w, y_offset + crop_h] crop = [ img[y_offset:y_offset + crop_h, x_offset:x_offset + crop_w] for img in imgs ] cropped.extend(crop) crop_bboxes.extend([bbox for _ in range(len(imgs))]) crop_bboxes = np.array(crop_bboxes) results['imgs'] = cropped results['crop_bbox'] = crop_bboxes results['img_shape'] = results['imgs'][0].shape[:2] return results
def __repr__(self): repr_str = f'{self.__class__.__name__}(crop_size={self.crop_size})' return repr_str
[docs]@TRANSFORMS.register_module() class TenCrop(BaseTransform): """Crop the images into 10 crops (corner + center + flip). Crop the four corners and the center part of the image with the same given crop_size, and flip it horizontally. Required keys are "imgs", "img_shape", added or modified keys are "imgs", "crop_bbox" and "img_shape". Args: crop_size(int | tuple[int]): (w, h) of crop size. """ def __init__(self, crop_size): self.crop_size = _pair(crop_size) if not mmengine.is_tuple_of(self.crop_size, int): raise TypeError(f'Crop_size must be int or tuple of int, ' f'but got {type(crop_size)}')
[docs] def transform(self, results): """Performs the TenCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, False) if 'gt_bboxes' in results or 'proposals' in results: warnings.warn('TenCrop cannot process bounding boxes') imgs = results['imgs'] img_h, img_w = results['imgs'][0].shape[:2] crop_w, crop_h = self.crop_size w_step = (img_w - crop_w) // 4 h_step = (img_h - crop_h) // 4 offsets = [ (0, 0), # upper left (4 * w_step, 0), # upper right (0, 4 * h_step), # lower left (4 * w_step, 4 * h_step), # lower right (2 * w_step, 2 * h_step), # center ] img_crops = list() crop_bboxes = list() for x_offset, y_offsets in offsets: crop = [ img[y_offsets:y_offsets + crop_h, x_offset:x_offset + crop_w] for img in imgs ] flip_crop = [np.flip(c, axis=1).copy() for c in crop] bbox = [x_offset, y_offsets, x_offset + crop_w, y_offsets + crop_h] img_crops.extend(crop) img_crops.extend(flip_crop) crop_bboxes.extend([bbox for _ in range(len(imgs) * 2)]) crop_bboxes = np.array(crop_bboxes) results['imgs'] = img_crops results['crop_bbox'] = crop_bboxes results['img_shape'] = results['imgs'][0].shape[:2] return results
def __repr__(self): repr_str = f'{self.__class__.__name__}(crop_size={self.crop_size})' return repr_str
@TRANSFORMS.register_module() class RandomErasing(BaseTransform): """Randomly selects a rectangle region in an image and erase pixels. basically refer mmcls. **Required Keys:** - img **Modified Keys:** - img Args: erase_prob (float): Probability that image will be randomly erased. Default: 0.5 min_area_ratio (float): Minimum erased area / input image area Default: 0.02 max_area_ratio (float): Maximum erased area / input image area Default: 1/3 aspect_range (sequence | float): Aspect ratio range of erased area. if float, it will be converted to (aspect_ratio, 1/aspect_ratio) Default: (3/10, 10/3) mode (str): Fill method in erased area, can be: - const (default): All pixels are assign with the same value. - rand: each pixel is assigned with a random value in [0, 255] fill_color (sequence | Number): Base color filled in erased area. Defaults to (128, 128, 128). fill_std (sequence | Number, optional): If set and ``mode`` is 'rand', fill erased area with random color from normal distribution (mean=fill_color, std=fill_std); If not set, fill erased area with random color from uniform distribution (0~255). Defaults to None. Note: See `Random Erasing Data Augmentation <https://arxiv.org/pdf/1708.04896.pdf>`_ This paper provided 4 modes: RE-R, RE-M, RE-0, RE-255, and use RE-M as default. The config of these 4 modes are: - RE-R: RandomErasing(mode='rand') - RE-M: RandomErasing(mode='const', fill_color=(123.67, 116.3, 103.5)) - RE-0: RandomErasing(mode='const', fill_color=0) - RE-255: RandomErasing(mode='const', fill_color=255) """ def __init__(self, erase_prob=0.5, min_area_ratio=0.02, max_area_ratio=1 / 3, aspect_range=(3 / 10, 10 / 3), mode='const', fill_color=(128, 128, 128), fill_std=None): assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1. assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1. assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1. assert min_area_ratio <= max_area_ratio, \ 'min_area_ratio should be smaller than max_area_ratio' if isinstance(aspect_range, float): aspect_range = min(aspect_range, 1 / aspect_range) aspect_range = (aspect_range, 1 / aspect_range) assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \ and all(isinstance(x, float) for x in aspect_range), \ 'aspect_range should be a float or Sequence with two float.' assert all(x > 0 for x in aspect_range), \ 'aspect_range should be positive.' assert aspect_range[0] <= aspect_range[1], \ 'In aspect_range (min, max), min should be smaller than max.' assert mode in ['const', 'rand'], \ 'Please select `mode` from ["const", "rand"].' if isinstance(fill_color, Number): fill_color = [fill_color] * 3 assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \ and all(isinstance(x, Number) for x in fill_color), \ 'fill_color should be a float or Sequence with three int.' if fill_std is not None: if isinstance(fill_std, Number): fill_std = [fill_std] * 3 assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \ and all(isinstance(x, Number) for x in fill_std), \ 'fill_std should be a float or Sequence with three int.' self.erase_prob = erase_prob self.min_area_ratio = min_area_ratio self.max_area_ratio = max_area_ratio self.aspect_range = aspect_range self.mode = mode self.fill_color = fill_color self.fill_std = fill_std def _img_fill_pixels(self, img, top, left, h, w): """Fill pixels to the patch of image.""" if self.mode == 'const': patch = np.empty((h, w, 3), dtype=np.uint8) patch[:, :] = np.array(self.fill_color, dtype=np.uint8) elif self.fill_std is None: # Uniform distribution patch = np.random.uniform(0, 256, (h, w, 3)).astype(np.uint8) else: # Normal distribution patch = np.random.normal(self.fill_color, self.fill_std, (h, w, 3)) patch = np.clip(patch.astype(np.int32), 0, 255).astype(np.uint8) img[top:top + h, left:left + w] = patch return img def _fill_pixels(self, imgs, top, left, h, w): """Fill pixels to the patch of each image in frame clip.""" return [self._img_fill_pixels(img, top, left, h, w) for img in imgs] @cache_randomness def random_disable(self): """Randomly disable the transform.""" return np.random.rand() > self.erase_prob @cache_randomness def random_patch(self, img_h, img_w): """Randomly generate patch the erase.""" # convert the aspect ratio to log space to equally handle width and # height. log_aspect_range = np.log( np.array(self.aspect_range, dtype=np.float32)) aspect_ratio = np.exp(np.random.uniform(*log_aspect_range)) area = img_h * img_w area *= np.random.uniform(self.min_area_ratio, self.max_area_ratio) h = min(int(round(np.sqrt(area * aspect_ratio))), img_h) w = min(int(round(np.sqrt(area / aspect_ratio))), img_w) top = np.random.randint(0, img_h - h) if img_h > h else 0 left = np.random.randint(0, img_w - w) if img_w > w else 0 return top, left, h, w def transform(self, results): """ Args: results (dict): Results dict from pipeline Returns: dict: Results after the transformation. """ if self.random_disable(): return results imgs = results['imgs'] img_h, img_w = imgs[0].shape[:2] imgs = self._fill_pixels(imgs, *self.random_patch(img_h, img_w)) results['imgs'] = imgs return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(erase_prob={self.erase_prob}, ' repr_str += f'min_area_ratio={self.min_area_ratio}, ' repr_str += f'max_area_ratio={self.max_area_ratio}, ' repr_str += f'aspect_range={self.aspect_range}, ' repr_str += f'mode={self.mode}, ' repr_str += f'fill_color={self.fill_color}, ' repr_str += f'fill_std={self.fill_std})' return repr_str