Source code for mmaction.models.backbones.resnet
# Copyright (c) OpenMMLab. All rights reserved.
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Tuple, Union
import mmengine
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.logging import MMLogger
from mmengine.model import BaseModule
from mmengine.runner.checkpoint import _load_checkpoint
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from torch.utils import checkpoint as cp
from mmaction.registry import MODELS
from mmaction.utils import ConfigType
class BasicBlock(nn.Module):
"""Basic block for ResNet.
Args:
inplanes (int): Number of channels for the input in first conv2d layer.
planes (int): Number of channels produced by some norm/conv2d layers.
stride (int): Stride in the conv layer. Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
downsample (nn.Module, optional): Downsample layer. Defaults to None.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``, the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Defaults to ``pytorch``.
conv_cfg (Union[dict, ConfigDict]): Config for norm layers.
Defaults to ``dict(type='Conv')``.
norm_cfg (Union[dict, ConfigDict]): Config for norm layers. required
keys are ``type`` and ``requires_grad``.
Defaults to ``dict(type='BN2d', requires_grad=True)``.
act_cfg (Union[dict, ConfigDict]): Config for activate layers.
Defaults to ``dict(type='ReLU', inplace=True)``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
"""
expansion = 1
def __init__(self,
inplanes: int,
planes: int,
stride: int = 1,
dilation: int = 1,
downsample: Optional[nn.Module] = None,
style: str = 'pytorch',
conv_cfg: ConfigType = dict(type='Conv'),
norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
act_cfg: ConfigType = dict(type='ReLU', inplace=True),
with_cp: bool = False) -> None:
super().__init__()
assert style in ['pytorch', 'caffe']
self.conv1 = ConvModule(
inplanes,
planes,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv2 = ConvModule(
planes,
planes,
kernel_size=3,
stride=1,
padding=1,
dilation=1,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.style = style
self.stride = stride
self.dilation = dilation
self.norm_cfg = norm_cfg
assert not with_cp
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
"""Bottleneck block for ResNet.
Args:
inplanes (int):
Number of channels for the input feature in first conv layer.
planes (int):
Number of channels produced by some norm layes and conv layers.
stride (int): Spatial stride in the conv layer. Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
downsample (nn.Module, optional): Downsample layer. Defaults to None.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``, the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Defaults to ``pytorch``.
conv_cfg (Union[dict, ConfigDict]): Config for norm layers.
Defaults to ``dict(type='Conv')``.
norm_cfg (Union[dict, ConfigDict]): Config for norm layers. required
keys are ``type`` and ``requires_grad``.
Defaults to ``dict(type='BN2d', requires_grad=True)``.
act_cfg (Union[dict, ConfigDict]): Config for activate layers.
Defaults to ``dict(type='ReLU', inplace=True)``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
"""
expansion = 4
def __init__(self,
inplanes: int,
planes: int,
stride: int = 1,
dilation: int = 1,
downsample: Optional[nn.Module] = None,
style: str = 'pytorch',
conv_cfg: ConfigType = dict(type='Conv'),
norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
act_cfg: ConfigType = dict(type='ReLU', inplace=True),
with_cp: bool = False) -> None:
super().__init__()
assert style in ['pytorch', 'caffe']
self.inplanes = inplanes
self.planes = planes
if style == 'pytorch':
self.conv1_stride = 1
self.conv2_stride = stride
else:
self.conv1_stride = stride
self.conv2_stride = 1
self.conv1 = ConvModule(
inplanes,
planes,
kernel_size=1,
stride=self.conv1_stride,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv2 = ConvModule(
planes,
planes,
kernel_size=3,
stride=self.conv2_stride,
padding=dilation,
dilation=dilation,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv3 = ConvModule(
planes,
planes * self.expansion,
kernel_size=1,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.norm_cfg = norm_cfg
self.with_cp = with_cp
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
def make_res_layer(block: nn.Module,
inplanes: int,
planes: int,
blocks: int,
stride: int = 1,
dilation: int = 1,
style: str = 'pytorch',
conv_cfg: Optional[ConfigType] = None,
norm_cfg: Optional[ConfigType] = None,
act_cfg: Optional[ConfigType] = None,
with_cp: bool = False) -> nn.Module:
"""Build residual layer for ResNet.
Args:
block: (nn.Module): Residual module to be built.
inplanes (int): Number of channels for the input feature in each block.
planes (int): Number of channels for the output feature in each block.
blocks (int): Number of residual blocks.
stride (int): Stride in the conv layer. Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``, the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Defaults to ``pytorch``.
conv_cfg (Union[dict, ConfigDict], optional): Config for norm layers.
Defaults to None.
norm_cfg (Union[dict, ConfigDict], optional): Config for norm layers.
Defaults to None.
act_cfg (Union[dict, ConfigDict], optional): Config for activate
layers. Defaults to None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
Returns:
nn.Module: A residual layer for the given config.
"""
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = ConvModule(
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
layers = []
layers.append(
block(
inplanes,
planes,
stride,
dilation,
downsample,
style=style,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp))
inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
inplanes,
planes,
1,
dilation,
style=style,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp))
return nn.Sequential(*layers)
[docs]@MODELS.register_module()
class ResNet(BaseModule):
"""ResNet backbone.
Args:
depth (int): Depth of resnet, from ``{18, 34, 50, 101, 152}``.
pretrained (str, optional): Name of pretrained model. Defaults to None.
torchvision_pretrain (bool): Whether to load pretrained model from
torchvision. Defaults to True.
in_channels (int): Channel num of input features. Defaults to 3.
num_stages (int): Resnet stages. Defaults to 4.
out_indices (Sequence[int]): Indices of output feature.
Defaults to (3, ).
strides (Sequence[int]): Strides of the first block of each stage.
Defaults to ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Defaults to ``(1, 1, 1, 1)``.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``, the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Defaults to ``pytorch``.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters. Defaults to -1.
conv_cfg (dict or ConfigDict): Config for norm layers.
Defaults ``dict(type='Conv')``.
norm_cfg (Union[dict, ConfigDict]): Config for norm layers. required
keys are ``type`` and ``requires_grad``.
Defaults to ``dict(type='BN2d', requires_grad=True)``.
act_cfg (Union[dict, ConfigDict]): Config for activate layers.
Defaults to ``dict(type='ReLU', inplace=True)``.
norm_eval (bool): Whether to set BN layers to eval mode, namely, freeze
running stats (mean and var). Defaults to False.
partial_bn (bool): Whether to use partial bn. Defaults to False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict or list[dict]): Initialization config dict. Defaults to
``[
dict(type='Kaiming', layer='Conv2d',),
dict(type='Constant', layer='BatchNorm', val=1.)
]``.
"""
arch_settings = {
18: (BasicBlock, (2, 2, 2, 2)),
34: (BasicBlock, (3, 4, 6, 3)),
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(
self,
depth: int,
pretrained: Optional[str] = None,
torchvision_pretrain: bool = True,
in_channels: int = 3,
num_stages: int = 4,
out_indices: Sequence[int] = (3, ),
strides: Sequence[int] = (1, 2, 2, 2),
dilations: Sequence[int] = (1, 1, 1, 1),
style: str = 'pytorch',
frozen_stages: int = -1,
conv_cfg: ConfigType = dict(type='Conv'),
norm_cfg: ConfigType = dict(type='BN2d', requires_grad=True),
act_cfg: ConfigType = dict(type='ReLU', inplace=True),
norm_eval: bool = False,
partial_bn: bool = False,
with_cp: bool = False,
init_cfg: Optional[Union[Dict, List[Dict]]] = [
dict(type='Kaiming', layer='Conv2d'),
dict(type='Constant', layer='BatchNorm2d', val=1.)
]
) -> None:
super().__init__(init_cfg=init_cfg)
if depth not in self.arch_settings:
raise KeyError(f'invalid depth {depth} for resnet')
self.depth = depth
self.in_channels = in_channels
self.pretrained = pretrained
self.torchvision_pretrain = torchvision_pretrain
self.num_stages = num_stages
assert 1 <= num_stages <= 4
self.out_indices = out_indices
assert max(out_indices) < num_stages
self.strides = strides
self.dilations = dilations
assert len(strides) == len(dilations) == num_stages
self.style = style
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.partial_bn = partial_bn
self.with_cp = with_cp
self.block, stage_blocks = self.arch_settings[depth]
self.stage_blocks = stage_blocks[:num_stages]
self.inplanes = 64
self._make_stem_layer()
self.res_layers = []
for i, num_blocks in enumerate(self.stage_blocks):
stride = strides[i]
dilation = dilations[i]
planes = 64 * 2**i
res_layer = make_res_layer(
self.block,
self.inplanes,
planes,
num_blocks,
stride=stride,
dilation=dilation,
style=self.style,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp)
self.inplanes = planes * self.block.expansion
layer_name = f'layer{i + 1}'
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self.feat_dim = self.block.expansion * 64 * 2**(
len(self.stage_blocks) - 1)
def _make_stem_layer(self) -> None:
"""Construct the stem layers consists of a conv+norm+act module and a
pooling layer."""
self.conv1 = ConvModule(
self.in_channels,
64,
kernel_size=7,
stride=2,
padding=3,
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
@staticmethod
def _load_conv_params(conv: nn.Module, state_dict_tv: OrderedDict,
module_name_tv: str,
loaded_param_names: List[str]) -> None:
"""Load the conv parameters of resnet from torchvision.
Args:
conv (nn.Module): The destination conv module.
state_dict_tv (OrderedDict): The state dict of pretrained
torchvision model.
module_name_tv (str): The name of corresponding conv module in the
torchvision model.
loaded_param_names (list[str]): List of parameters that have been
loaded.
"""
weight_tv_name = module_name_tv + '.weight'
if conv.weight.data.shape == state_dict_tv[weight_tv_name].shape:
conv.weight.data.copy_(state_dict_tv[weight_tv_name])
loaded_param_names.append(weight_tv_name)
if getattr(conv, 'bias') is not None:
bias_tv_name = module_name_tv + '.bias'
if conv.bias.data.shape == state_dict_tv[bias_tv_name].shape:
conv.bias.data.copy_(state_dict_tv[bias_tv_name])
loaded_param_names.append(bias_tv_name)
@staticmethod
def _load_bn_params(bn: nn.Module, state_dict_tv: OrderedDict,
module_name_tv: str,
loaded_param_names: List[str]) -> None:
"""Load the bn parameters of resnet from torchvision.
Args:
bn (nn.Module): The destination bn module.
state_dict_tv (OrderedDict): The state dict of pretrained
torchvision model.
module_name_tv (str): The name of corresponding bn module in the
torchvision model.
loaded_param_names (list[str]): List of parameters that have been
loaded.
"""
for param_name, param in bn.named_parameters():
param_tv_name = f'{module_name_tv}.{param_name}'
param_tv = state_dict_tv[param_tv_name]
if param.data.shape == param_tv.shape:
param.data.copy_(param_tv)
loaded_param_names.append(param_tv_name)
for param_name, param in bn.named_buffers():
param_tv_name = f'{module_name_tv}.{param_name}'
# some buffers like num_batches_tracked may not exist
if param_tv_name in state_dict_tv:
param_tv = state_dict_tv[param_tv_name]
if param.data.shape == param_tv.shape:
param.data.copy_(param_tv)
loaded_param_names.append(param_tv_name)
def _load_torchvision_checkpoint(self,
logger: mmengine.MMLogger = None) -> None:
"""Initiate the parameters from torchvision pretrained checkpoint."""
state_dict_torchvision = _load_checkpoint(
self.pretrained, map_location='cpu')
if 'state_dict' in state_dict_torchvision:
state_dict_torchvision = state_dict_torchvision['state_dict']
loaded_param_names = []
for name, module in self.named_modules():
if isinstance(module, ConvModule):
# we use a ConvModule to wrap conv+bn+relu layers, thus the
# name mapping is needed
if 'downsample' in name:
# layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
original_conv_name = name + '.0'
# layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
original_bn_name = name + '.1'
else:
# layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
original_conv_name = name
# layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
original_bn_name = name.replace('conv', 'bn')
self._load_conv_params(module.conv, state_dict_torchvision,
original_conv_name, loaded_param_names)
self._load_bn_params(module.bn, state_dict_torchvision,
original_bn_name, loaded_param_names)
# check if any parameters in the 2d checkpoint are not loaded
remaining_names = set(
state_dict_torchvision.keys()) - set(loaded_param_names)
if remaining_names:
logger.info(
f'These parameters in pretrained checkpoint are not loaded'
f': {remaining_names}')
[docs] def init_weights(self) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
if self.torchvision_pretrain:
# torchvision's
self._load_torchvision_checkpoint(logger)
else:
# ours
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights()
elif self.pretrained is None:
super().init_weights()
else:
raise TypeError('pretrained must be a str or None')
[docs] def forward(self, x: torch.Tensor) \
-> Union[torch.Tensor, Tuple[torch.Tensor]]:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
Union[torch.Tensor or Tuple[torch.Tensor]]: The feature of the
input samples extracted by the backbone.
"""
x = self.conv1(x)
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
return tuple(outs)
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.frozen_stages >= 0:
self.conv1.bn.eval()
for m in self.conv1.modules():
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def _partial_bn(self) -> None:
"""Freezing BatchNorm2D except the first one."""
logger = MMLogger.get_current_instance()
logger.info('Freezing BatchNorm2D except the first one.')
count_bn = 0
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
count_bn += 1
if count_bn >= 2:
m.eval()
# shutdown update in frozen mode
m.weight.requires_grad = False
m.bias.requires_grad = False
[docs] def train(self, mode: bool = True) -> None:
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
if mode and self.partial_bn:
self._partial_bn()