Source code for mmaction.models.heads.tpn_head
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import torch.nn as nn
from mmengine.device import get_device
from torch import Tensor
from mmaction.registry import MODELS
from .tsn_head import TSNHead
[docs]@MODELS.register_module()
class TPNHead(TSNHead):
"""Class head for TPN."""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
if self.spatial_type == 'avg':
# use `nn.AdaptiveAvgPool3d` to adaptively match the in_channels.
self.avg_pool3d = nn.AdaptiveAvgPool3d((1, 1, 1))
else:
self.avg_pool3d = None
self.avg_pool2d = None
self.new_cls = None
def _init_new_cls(self) -> None:
self.new_cls = nn.Conv3d(self.in_channels, self.num_classes, 1, 1, 0)
self.new_cls = self.new_cls.to(get_device())
self.new_cls.weight.copy_(self.fc_cls.weight[..., None, None, None])
self.new_cls.bias.copy_(self.fc_cls.bias)
[docs] def forward(self,
x,
num_segs: Optional[int] = None,
fcn_test: bool = False,
**kwargs) -> Tensor:
"""Defines the computation performed at every call.
Args:
x (Tensor): The input data.
num_segs (int, optional): Number of segments into which a video
is divided. Defaults to None.
fcn_test (bool): Whether to apply full convolution (fcn) testing.
Defaults to False.
Returns:
Tensor: The classification scores for input samples.
"""
if fcn_test:
if self.avg_pool3d:
x = self.avg_pool3d(x)
if self.new_cls is None:
self._init_new_cls()
x = self.new_cls(x)
cls_score_feat_map = x.view(x.size(0), -1)
return cls_score_feat_map
if self.avg_pool2d is None:
kernel_size = (1, x.shape[-2], x.shape[-1])
self.avg_pool2d = nn.AvgPool3d(kernel_size, stride=1, padding=0)
if num_segs is None:
# [N, in_channels, 3, 7, 7]
x = self.avg_pool3d(x)
else:
# [N * num_segs, in_channels, 7, 7]
x = self.avg_pool2d(x)
# [N * num_segs, in_channels, 1, 1]
x = x.reshape((-1, num_segs) + x.shape[1:])
# [N, num_segs, in_channels, 1, 1]
x = self.consensus(x)
# [N, 1, in_channels, 1, 1]
x = x.squeeze(1)
# [N, in_channels, 1, 1]
if self.dropout is not None:
x = self.dropout(x)
# [N, in_channels, 1, 1]
x = x.view(x.size(0), -1)
# [N, in_channels]
cls_score = self.fc_cls(x)
# [N, num_classes]
return cls_score