模型微调¶
本教程提供了使用预训练模型在其他数据集上进行微调的指导。通过微调,可以获得更好的性能。
概述¶
在新数据集上进行模型微调有两个步骤。
选择模板配置¶
这里我们以 configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py
为例。我们首先将该配置文件复制到同一文件夹,并将其重命名为 tsn_ucf101.py
,然后需要注意配置中的四个部分,具体来说,为不存在的键添加新键,并修改现有键的原始键。
修改 Head¶
cls_head
中的 num_classes
需要更改为新数据集的类别数。预训练模型的权重会被重用,除了最后的预测层。因此,更改类别数是安全的。在我们的例子中,UCF101 有 101 个类别。所以我们将其从 400(Kinetics-400 的类别数)改为 101。
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101 # 将 400 修改为 101
))
修改数据集¶
MMAction2 支持 UCF101、Kinetics-400、Moments in Time、Multi-Moments in Time、THUMOS14、Something-Something V1&V2、ActivityNet 数据集。用户可能需要将上述其中一个数据集适应到他们的特殊数据集上。你可以参考准备数据集和自定义数据集了解更多细节。在我们的例子中,UCF101 已经由各种数据集类型支持,例如 VideoDataset
,因此我们将配置修改如下。
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
修改训练计划¶
微调通常需要较小的学习率和较少的训练周期。
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # 将 100 修改为 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning policy
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # 将 100 修改为 50
by_epoch=True,
milestones=[20, 40], # 修改 milestones
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # 将 0.01 修改为 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
使用预训练模型¶
为了在整个网络上使用预训练模型,新配置文件在 load_from
中添加了预训练模型的链接。我们在 configs/_base_/default_runtime.py
中设置 load_from=None
作为默认值,并且根据继承设计,用户可以通过在其配置中设置 load_from
来直接更改它。
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth' # 模型路径可以在模型库中找到
开始训练¶
现在,我们已经完成了微调的配置文件,如下所示:
_base_ = [
'../../_base_/models/tsn_r50.py', '../../_base_/schedules/sgd_100e.py',
'../../_base_/default_runtime.py'
]
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101 # 将 400 修改为 101
))
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=3,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='TenCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=dict(video=data_root),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val),
pipeline=test_pipeline,
test_mode=True))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # 将 100 修改为 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning policy
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # 将 100 修改为 50
by_epoch=True,
milestones=[20, 40], # 修改 milestones
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # 将 0.01 修改为 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
val_evaluator = dict(type='AccMetric')
test_evaluator = val_evaluator
default_hooks = dict(checkpoint=dict(interval=3, max_keep_ckpts=3))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (32 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=256)
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'
另一种更简单的方法是继承 kinetics400 配置,并只指定修改的键。请确保自定义配置与 configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py
在同一个文件夹中。
_base_ = [
'tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py' # 继承模板配置
]
# model settings
model = dict(
cls_head=dict(
type='TSNHead',
num_classes=101)) # 将 400 修改为 101
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'
train_dataloader = dict(
dataset=dict(
ann_file=ann_file_train,
data_prefix=dict(video=data_root)))
val_dataloader = dict(
dataset=dict(
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val)))
test_dataloader = dict(
dataset=dict(
ann_file=ann_file_val,
data_prefix=dict(video=data_root_val)))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=50, # 将 100 修改为 50
val_begin=1,
val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=50, # 将 100 修改为 50
by_epoch=True,
milestones=[20, 40], # 修改 milestones
gamma=0.1)
]
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.005, # 将 0.01 修改为 0.005
momentum=0.9,
weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'
你可以使用以下命令在你的数据集上微调模型。
python tools/train.py ${CONFIG_FILE} [可选参数]
例如:在确定性选项下,在 Kinetics-400 数据集上训练 TSN 模型。
python tools/train.py configs/recognition/tsn/tsn_ucf101.py \
--seed=0 --deterministic
更多细节,请参考训练和测试教程中的训练部分。