ST Nucleo F767ZI

Hardware

Platform ST STM32: The STM32 family of 32-bit Flash MCUs based on the ARM Cortex-M processor is designed to offer new degrees of freedom to MCU users. It offers a 32-bit product range that combines very high performance, real-time capabilities, digital signal processing, and low-power, low-voltage operation, while maintaining full integration and ease of development.

Microcontroller

STM32F767ZIT6

Frequency

216MHz

Flash

2MB

RAM

512KB

Vendor

ST

Configuration

Please use nucleo_f767zi ID for board option in “platformio.ini” (Project Configuration File):

[env:nucleo_f767zi]
platform = ststm32
board = nucleo_f767zi

You can override default ST Nucleo F767ZI settings per build environment using board_*** option, where *** is a JSON object path from board manifest nucleo_f767zi.json. For example, board_build.mcu, board_build.f_cpu, etc.

[env:nucleo_f767zi]
platform = ststm32
board = nucleo_f767zi

; change microcontroller
board_build.mcu = stm32f767zit6

; change MCU frequency
board_build.f_cpu = 216000000L

Uploading

ST Nucleo F767ZI supports the next uploading protocols:

  • blackmagic

  • jlink

  • mbed

  • stlink

Default protocol is stlink

You can change upload protocol using upload_protocol option:

[env:nucleo_f767zi]
platform = ststm32
board = nucleo_f767zi

upload_protocol = stlink

Debugging

PIO Unified Debugger - “1-click” solution for debugging with a zero configuration.

Warning

You will need to install debug tool drivers depending on your system. Please click on compatible debug tool below for the further instructions and configuration information.

You can switch between debugging Tools & Debug Probes using debug_tool option in “platformio.ini” (Project Configuration File).

ST Nucleo F767ZI has on-board debug probe and IS READY for debugging. You don’t need to use/buy external debug probe.

Compatible Tools

On-board

Default

Black Magic Probe

J-LINK

ST-LINK

Yes

Yes

Frameworks

Name

Description

Arduino

Arduino Wiring-based Framework allows writing cross-platform software to control devices attached to a wide range of Arduino boards to create all kinds of creative coding, interactive objects, spaces or physical experiences.

Mbed

The mbed framework The mbed SDK has been designed to provide enough hardware abstraction to be intuitive and concise, yet powerful enough to build complex projects. It is built on the low-level ARM CMSIS APIs, allowing you to code down to the metal if needed. In addition to RTOS, USB and Networking libraries, a cookbook of hundreds of reusable peripheral and module libraries have been built on top of the SDK by the mbed Developer Community.

STM32Cube

STM32Cube embedded software libraries, including: The HAL hardware abstraction layer, enabling portability between different STM32 devices via standardized API calls; The Low-Layer (LL) APIs, a light-weight, optimized, expert oriented set of APIs designed for both performance and runtime efficiency.

Zephyr

The Zephyr Project is a scalable real-time operating system (RTOS) supporting multiple hardware architectures, optimized for resource constrained devices, and built with safety and security in mind.