Quickstart ========== The functions available from pydash can be used in two styles. The first is by using the module directly or importing from it: .. doctest:: >>> import pydash # Arrays >>> pydash.flatten([1, 2, [3, [4, 5, [6, 7]]]]) [1, 2, 3, [4, 5, [6, 7]]] >>> pydash.flatten_deep([1, 2, [3, [4, 5, [6, 7]]]]) [1, 2, 3, 4, 5, 6, 7] # Collections >>> pydash.map_([{'name': 'moe', 'age': 40}, {'name': 'larry', 'age': 50}], 'name') ['moe', 'larry'] # Functions >>> curried = pydash.curry(lambda a, b, c: a + b + c) >>> curried(1, 2)(3) 6 # Objects >>> pydash.omit({'name': 'moe', 'age': 40}, 'age') {'name': 'moe'} # Utilities >>> pydash.times(3, lambda index: index) [0, 1, 2] # Chaining >>> pydash.chain([1, 2, 3, 4]).without(2, 3).reject(lambda x: x > 1).value() [1] The second style is to use the ``py_`` or ``_`` instances (they are the same object as two different aliases): .. doctest:: >>> from pydash import py_ # Method calling which is equivalent to pydash.flatten(...) >>> py_.flatten([1, 2, [3, [4, 5, [6, 7]]]]) [1, 2, 3, [4, 5, [6, 7]]] # Method chaining which is equivalent to pydash.chain(...) >>> py_([1, 2, 3, 4]).without(2, 3).reject(lambda x: x > 1).value() [1] # Late method chaining >>> py_().without(2, 3).reject(lambda x: x > 1)([1, 2, 3, 4]) [1] .. seealso:: For further details consult :ref:`API Reference `.