Additional Persistence Techniques¶
Embedding SQL Insert/Update Expressions into a Flush¶
This feature allows the value of a database column to be set to a SQL expression instead of a literal value. It’s especially useful for atomic updates, calling stored procedures, etc. All you do is assign an expression to an attribute:
class SomeClass(Base):
__tablename__ = "some_table"
# ...
value = Column(Integer)
someobject = session.query(SomeClass).get(5)
# set 'value' attribute to a SQL expression adding one
someobject.value = SomeClass.value + 1
# issues "UPDATE some_table SET value=value+1"
session.commit()
This technique works both for INSERT and UPDATE statements. After the
flush/commit operation, the value
attribute on someobject
above is
expired, so that when next accessed the newly generated value will be loaded
from the database.
Using SQL Expressions with Sessions¶
SQL expressions and strings can be executed via the
Session
within its transactional context.
This is most easily accomplished using the
Session.execute()
method, which returns a
ResultProxy
in the same manner as an
Engine
or
Connection
:
Session = sessionmaker(bind=engine)
session = Session()
# execute a string statement
result = session.execute("select * from table where id=:id", {'id':7})
# execute a SQL expression construct
result = session.execute(select([mytable]).where(mytable.c.id==7))
The current Connection
held by the
Session
is accessible using the
Session.connection()
method:
connection = session.connection()
The examples above deal with a Session
that’s
bound to a single Engine
or
Connection
. To execute statements using a
Session
which is bound either to multiple
engines, or none at all (i.e. relies upon bound metadata), both
Session.execute()
and
Session.connection()
accept a mapper
keyword
argument, which is passed a mapped class or
Mapper
instance, which is used to locate the
proper context for the desired engine:
Session = sessionmaker()
session = Session()
# need to specify mapper or class when executing
result = session.execute("select * from table where id=:id", {'id':7}, mapper=MyMappedClass)
result = session.execute(select([mytable], mytable.c.id==7), mapper=MyMappedClass)
connection = session.connection(MyMappedClass)
Forcing NULL on a column with a default¶
The ORM considers any attribute that was never set on an object as a “default” case; the attribute will be omitted from the INSERT statement:
class MyObject(Base):
__tablename__ = 'my_table'
id = Column(Integer, primary_key=True)
data = Column(String(50), nullable=True)
obj = MyObject(id=1)
session.add(obj)
session.commit() # INSERT with the 'data' column omitted; the database
# itself will persist this as the NULL value
Omitting a column from the INSERT means that the column will have the NULL value set, unless the column has a default set up, in which case the default value will be persisted. This holds true both from a pure SQL perspective with server-side defaults, as well as the behavior of SQLAlchemy’s insert behavior with both client-side and server-side defaults:
class MyObject(Base):
__tablename__ = 'my_table'
id = Column(Integer, primary_key=True)
data = Column(String(50), nullable=True, server_default="default")
obj = MyObject(id=1)
session.add(obj)
session.commit() # INSERT with the 'data' column omitted; the database
# itself will persist this as the value 'default'
However, in the ORM, even if one assigns the Python value None
explicitly
to the object, this is treated the same as though the value were never
assigned:
class MyObject(Base):
__tablename__ = 'my_table'
id = Column(Integer, primary_key=True)
data = Column(String(50), nullable=True, server_default="default")
obj = MyObject(id=1, data=None)
session.add(obj)
session.commit() # INSERT with the 'data' column explicitly set to None;
# the ORM still omits it from the statement and the
# database will still persist this as the value 'default'
The above operation will persist into the data
column the
server default value of "default"
and not SQL NULL, even though None
was passed; this is a long-standing behavior of the ORM that many applications
hold as an assumption.
So what if we want to actually put NULL into this column, even though the
column has a default value? There are two approaches. One is that
on a per-instance level, we assign the attribute using the
null
SQL construct:
from sqlalchemy import null
obj = MyObject(id=1, data=null())
session.add(obj)
session.commit() # INSERT with the 'data' column explicitly set as null();
# the ORM uses this directly, bypassing all client-
# and server-side defaults, and the database will
# persist this as the NULL value
The null
SQL construct always translates into the SQL
NULL value being directly present in the target INSERT statement.
If we’d like to be able to use the Python value None
and have this
also be persisted as NULL despite the presence of column defaults,
we can configure this for the ORM using a Core-level modifier
TypeEngine.evaluates_none()
, which indicates
a type where the ORM should treat the value None
the same as any other
value and pass it through, rather than omitting it as a “missing” value:
class MyObject(Base):
__tablename__ = 'my_table'
id = Column(Integer, primary_key=True)
data = Column(
String(50).evaluates_none(), # indicate that None should always be passed
nullable=True, server_default="default")
obj = MyObject(id=1, data=None)
session.add(obj)
session.commit() # INSERT with the 'data' column explicitly set to None;
# the ORM uses this directly, bypassing all client-
# and server-side defaults, and the database will
# persist this as the NULL value
New in version 1.1: added the TypeEngine.evaluates_none()
method
in order to indicate that a “None” value should be treated as significant.
Fetching Server-Generated Defaults¶
As introduced in the sections Server-invoked DDL-Explicit Default Expressions and Marking Implicitly Generated Values, timestamps, and Triggered Columns, the Core supports the notion of database columns for which the database itself generates a value upon INSERT and in less common cases upon UPDATE statements. The ORM features support for such columns regarding being able to fetch these newly generated values upon flush. This behavior is required in the case of primary key columns that are generated by the server, since the ORM has to know the primary key of an object once it is persisted.
In the vast majority of cases, primary key columns that have their value
generated automatically by the database are simple integer columns, which are
implemented by the database as either a so-called “autoincrement” column, or
from a sequence associated with the column. Every database dialect within
SQLAlchemy Core supports a method of retrieving these primary key values which
is often native to the Python DBAPI, and in general this process is automatic,
with the exception of a database like Oracle that requires us to specify a
Sequence
explicitly. There is more documentation regarding this
at Column.autoincrement
.
For server-generating columns that are not primary key columns or that are not simple autoincrementing integer columns, the ORM requires that these columns are marked with an appropriate server_default directive that allows the ORM to retrieve this value. Not all methods are supported on all backends, however, so care must be taken to use the appropriate method. The two questions to be answered are, 1. is this column part of the primary key or not, and 2. does the database support RETURNING or an equivalent, such as “OUTPUT inserted”; these are SQL phrases which return a server-generated value at the same time as the INSERT or UPDATE statement is invoked. Databases that support RETURNING or equivalent include PostgreSQL, Oracle, and SQL Server. Databases that do not include SQLite and MySQL.
Case 1: non primary key, RETURNING or equivalent is supported¶
In this case, columns should be marked as FetchedValue
or with an
explicit Column.server_default
. The
mapper.eager_defaults
flag may be used to indicate that these
columns should be fetched immediately upon INSERT and sometimes UPDATE:
class MyModel(Base):
__tablename__ = 'my_table'
id = Column(Integer, primary_key=True)
timestamp = Column(DateTime(), server_default=func.now())
# assume a database trigger populates a value into this column
# during INSERT
special_identifier = Column(String(50), server_default=FetchedValue())
__mapper_args__ = {"eager_defaults": True}
Above, an INSERT statement that does not specify explicit values for “timestamp” or “special_identifier” from the client side will include the “timestamp” and “special_identifier” columns within the RETURNING clause so they are available immediately. On the PostgreSQL database, an INSERT for the above table will look like:
INSERT INTO my_table DEFAULT VALUES RETURNING my_table.id, my_table.timestamp, my_table.special_identifier
Case 2: non primary key, RETURNING or equivalent is not supported or not needed¶
This case is the same as case 1 above, except we don’t specify
mapper.eager_defaults
:
class MyModel(Base):
__tablename__ = 'my_table'
id = Column(Integer, primary_key=True)
timestamp = Column(DateTime(), server_default=func.now())
# assume a database trigger populates a value into this column
# during INSERT
special_identifier = Column(String(50), server_default=FetchedValue())
After a record with the above mapping is INSERTed, the “timestamp” and “special_identifier” columns will remain empty, and will be fetched via a second SELECT statement when they are first accessed after the flush, e.g. they are marked as “expired”.
If the mapper.eager_defaults
is still used, and the backend
database does not support RETURNING or an equivalent, the ORM will emit this
SELECT statement immediately following the INSERT statement. This is often
undesirable as it adds additional SELECT statements to the flush process that
may not be needed. Using the above mapping with the
mapper.eager_defaults
flag set to True against MySQL results
in SQL like this upon flush (minus the comment, which is for clarification only):
INSERT INTO my_table () VALUES ()
-- when eager_defaults **is** used, but RETURNING is not supported
SELECT my_table.timestamp AS my_table_timestamp, my_table.special_identifier AS my_table_special_identifier
FROM my_table WHERE my_table.id = %s
Case 3: primary key, RETURNING or equivalent is supported¶
A primary key column with a server-generated value must be fetched immediately upon INSERT; the ORM can only access rows for which it has a primary key value, so if the primary key is generated by the server, the ORM needs a way for the database to give us that new value immediately upon INSERT.
As mentioned above, for integer “autoincrement” columns as well as PostgreSQL SERIAL, these types are handled automatically by the Core; databases include functions for fetching the “last inserted id” where RETURNING is not supported, and where RETURNING is supported SQLAlchemy will use that.
However, for non-integer values, as well as for integer values that must be explicitly linked to a sequence or other triggered routine, the server default generation must be marked in the table metadata.
For an explicit sequence as we use with Oracle, this just means we are using
the Sequence
construct:
class MyOracleModel(Base):
__tablename__ = 'my_table'
id = Column(Integer, Sequence("my_sequence"), primary_key=True)
data = Column(String(50))
The INSERT for a model as above on Oracle looks like:
INSERT INTO my_table (id, data) VALUES (my_sequence.nextval, :data) RETURNING my_table.id INTO :ret_0
Where above, SQLAlchemy renders my_sequence.nextval
for the primary key column
and also uses RETURNING to get the new value back immediately.
For datatypes that generate values automatically, or columns that are populated
by a trigger, we use FetchedValue
. Below is a model that uses a
SQL Server TIMESTAMP column as the primary key, which generates values automatically:
class MyModel(Base):
__tablename__ = 'my_table'
timestamp = Column(TIMESTAMP(), server_default=FetchedValue(), primary_key=True)
An INSERT for the above table on SQL Server looks like:
INSERT INTO my_table OUTPUT inserted.timestamp DEFAULT VALUES
Case 4: primary key, RETURNING or equivalent is not supported¶
In this area we are generating rows for a database such as SQLite or MySQL where some means of generating a default is occurring on the server, but is outside of the database’s usual autoincrement routine. In this case, we have to make sure SQLAlchemy can “pre-execute” the default, which means it has to be an explicit SQL expression.
Note
This section will illustrate multiple recipes involving datetime values for MySQL and SQLite, since the datetime datatypes on these two backends have additional idiosyncratic requirements that are useful to illustrate. Keep in mind however that SQLite and MySQL require an explicit “pre-executed” default generator for any auto-generated datatype used as the primary key other than the usual single-column autoincrementing integer value.
MySQL with DateTime primary key¶
Using the example of a DateTime
column for MySQL, we add an explicit
pre-execute-supported default using the “NOW()” SQL function:
class MyModel(Base):
__tablename__ = 'my_table'
timestamp = Column(DateTime(), default=func.now(), primary_key=True)
Where above, we select the “NOW()” function to deliver a datetime value to the column. The SQL generated by the above is:
SELECT now() AS anon_1
INSERT INTO my_table (timestamp) VALUES (%s)
('2018-08-09 13:08:46',)
MySQL with TIMESTAMP primary key¶
When using the TIMESTAMP
datatype with MySQL, MySQL ordinarily
associates a server-side default with this datatype automatically. However
when we use one as a primary key, the Core cannot retrieve the newly generated
value unless we execute the function ourselves. As TIMESTAMP
on
MySQL actually stores a binary value, we need to add an additional “CAST” to our
usage of “NOW()” so that we retrieve a binary value that can be persisted
into the column:
from sqlalchemy import cast, Binary
class MyModel(Base):
__tablename__ = 'my_table'
timestamp = Column(
TIMESTAMP(),
default=cast(func.now(), Binary),
primary_key=True)
Above, in addition to selecting the “NOW()” function, we additionally make
use of the Binary
datatype in conjunction with cast()
so that
the returned value is binary. SQL rendered from the above within an
INSERT looks like:
SELECT CAST(now() AS BINARY) AS anon_1
INSERT INTO my_table (timestamp) VALUES (%s)
(b'2018-08-09 13:08:46',)
SQLite with DateTime primary key¶
For SQLite, new timestamps can be generated using the SQL function
datetime('now', 'localtime')
(or specify 'utc'
for UTC),
however making things more complicated is that this returns a string
value, which is then incompatible with SQLAlchemy’s DateTime
datatype (even though the datatype converts the information back into a
string for the SQLite backend, it must be passed through as a Python datetime).
We therefore must also specify that we’d like to coerce the return value to
DateTime
when it is returned from the function, which we achieve
by passing this as the type_
parameter:
class MyModel(Base):
__tablename__ = 'my_table'
timestamp = Column(
DateTime,
default=func.datetime('now', 'localtime', type_=DateTime),
primary_key=True)
The above mapping upon INSERT will look like:
SELECT datetime(?, ?) AS datetime_1
('now', 'localtime')
INSERT INTO my_table (timestamp) VALUES (?)
('2018-10-02 13:37:33.000000',)
See also
Partitioning Strategies (e.g. multiple database backends per Session)¶
Simple Vertical Partitioning¶
Vertical partitioning places different classes, class hierarchies,
or mapped tables, across multiple databases, by configuring the
Session
with the Session.binds
argument. This
argument receives a dictionary that contains any combination of
ORM-mapped classes, arbitrary classes within a mapped hierarchy (such
as declarative base classes or mixins), Table
objects,
and Mapper
objects as keys, which then refer typically to
Engine
or less typically Connection
objects as targets.
The dictionary is consulted whenever the Session
needs to
emit SQL on behalf of a particular kind of mapped class in order to locate
the appropriate source of database connectivity:
engine1 = create_engine('postgresql://db1')
engine2 = create_engine('postgresql://db2')
Session = sessionmaker()
# bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})
session = Session()
Above, SQL operations against either class will make usage of the Engine
linked to that class. The functionality is comprehensive across both
read and write operations; a Query
that is against entities
mapped to engine1
(determined by looking at the first entity in the
list of items requested) will make use of engine1
to run the query. A
flush operation will make use of both engines on a per-class basis as it
flushes objects of type User
and Account
.
In the more common case, there are typically base or mixin classes that can be
used to distinguish between operations that are destined for different database
connections. The Session.binds
argument can accommodate any
arbitrary Python class as a key, which will be used if it is found to be in the
__mro__
(Python method resolution order) for a particular mapped class.
Supposing two declarative bases are representing two different database
connections:
BaseA = declarative_base()
BaseB = declarative_base()
class User(BaseA):
# ...
class Address(BaseA):
# ...
class GameInfo(BaseB):
# ...
class GameStats(BaseB):
# ...
Session = sessionmaker()
# all User/Address operations will be on engine 1, all
# Game operations will be on engine 2
Session.configure(binds={BaseA:engine1, BaseB:engine2})
Above, classes which descend from BaseA
and BaseB
will have their
SQL operations routed to one of two engines based on which superclass
they descend from, if any. In the case of a class that descends from more
than one “bound” superclass, the superclass that is highest in the target
class’ hierarchy will be chosen to represent which engine should be used.
See also
Coordination of Transactions for a multiple-engine Session¶
One caveat to using multiple bound engines is in the case where a commit operation may fail on one backend after the commit has succeeded on another. This is an inconsistency problem that in relational databases is solved using a “two phase transaction”, which adds an additional “prepare” step to the commit sequence that allows for multiple databases to agree to commit before actually completing the transaction.
Due to limited support within DBAPIs, SQLAlchemy has limited support for two-
phase transactions across backends. Most typically, it is known to work well
with the PostgreSQL backend and to a lesser extent with the MySQL backend.
However, the Session
is fully capable of taking advantage of the two
phase transaction feature when the backend supports it, by setting the
Session.use_twophase
flag within sessionmaker
or
Session
. See Enabling Two-Phase Commit for an example.
Custom Vertical Partitioning¶
More comprehensive rule-based class-level partitioning can be built by
overriding the Session.get_bind()
method. Below we illustrate
a custom Session
which delivers the following rules:
Flush operations are delivered to the engine named
master
.Operations on objects that subclass
MyOtherClass
all occur on theother
engine.Read operations for all other classes occur on a random choice of the
slave1
orslave2
database.
engines = {
'master':create_engine("sqlite:///master.db"),
'other':create_engine("sqlite:///other.db"),
'slave1':create_engine("sqlite:///slave1.db"),
'slave2':create_engine("sqlite:///slave2.db"),
}
from sqlalchemy.orm import Session, sessionmaker
import random
class RoutingSession(Session):
def get_bind(self, mapper=None, clause=None):
if mapper and issubclass(mapper.class_, MyOtherClass):
return engines['other']
elif self._flushing:
return engines['master']
else:
return engines[
random.choice(['slave1','slave2'])
]
The above Session
class is plugged in using the class_
argument to sessionmaker
:
Session = sessionmaker(class_=RoutingSession)
This approach can be combined with multiple MetaData
objects,
using an approach such as that of using the declarative __abstract__
keyword, described at __abstract__.
See also
Django-style Database Routers in SQLAlchemy - blog post on a more comprehensive example of Session.get_bind()
Horizontal Partitioning¶
Horizontal partitioning partitions the rows of a single table (or a set of
tables) across multiple databases. The SQLAlchemy Session
contains support for this concept, however to use it fully requires that
Session
and Query
subclasses are used. A basic version
of these subclasses are available in the Horizontal Sharding
ORM extension. An example of use is at: Horizontal Sharding.
Bulk Operations¶
Note
Bulk Operations mode is a new series of operations made available
on the Session
object for the purpose of invoking INSERT and
UPDATE statements with greatly reduced Python overhead, at the expense
of much less functionality, automation, and error checking.
As of SQLAlchemy 1.0, these features should be considered as “beta”, and
additionally are intended for advanced users.
New in version 1.0.0.
Bulk operations on the Session
include Session.bulk_save_objects()
,
Session.bulk_insert_mappings()
, and Session.bulk_update_mappings()
.
The purpose of these methods is to directly expose internal elements of the unit of work system,
such that facilities for emitting INSERT and UPDATE statements given dictionaries
or object states can be utilized alone, bypassing the normal unit of work
mechanics of state, relationship and attribute management. The advantages
to this approach is strictly one of reduced Python overhead:
The flush() process, including the survey of all objects, their state, their cascade status, the status of all objects associated with them via
relationship()
, and the topological sort of all operations to be performed is completely bypassed. This reduces a great amount of Python overhead.The objects as given have no defined relationship to the target
Session
, even when the operation is complete, meaning there’s no overhead in attaching them or managing their state in terms of the identity map or session.The
Session.bulk_insert_mappings()
andSession.bulk_update_mappings()
methods accept lists of plain Python dictionaries, not objects; this further reduces a large amount of overhead associated with instantiating mapped objects and assigning state to them, which normally is also subject to expensive tracking of history on a per-attribute basis.The set of objects passed to all bulk methods are processed in the order they are received. In the case of
Session.bulk_save_objects()
, when objects of different types are passed, the INSERT and UPDATE statements are necessarily broken up into per-type groups. In order to reduce the number of batch INSERT or UPDATE statements passed to the DBAPI, ensure that the incoming list of objects are grouped by type.The process of fetching primary keys after an INSERT also is disabled by default. When performed correctly, INSERT statements can now more readily be batched by the unit of work process into
executemany()
blocks, which perform vastly better than individual statement invocations.UPDATE statements can similarly be tailored such that all attributes are subject to the SET clause unconditionally, again making it much more likely that
executemany()
blocks can be used.
The performance behavior of the bulk routines should be studied using the Performance example suite. This is a series of example scripts which illustrate Python call-counts across a variety of scenarios, including bulk insert and update scenarios.
See also
Performance - includes detailed examples of bulk operations contrasted against traditional Core and ORM methods, including performance metrics.
Usage¶
The methods each work in the context of the Session
object’s
transaction, like any other:
s = Session()
objects = [
User(name="u1"),
User(name="u2"),
User(name="u3")
]
s.bulk_save_objects(objects)
For Session.bulk_insert_mappings()
, and Session.bulk_update_mappings()
,
dictionaries are passed:
s.bulk_insert_mappings(User,
[dict(name="u1"), dict(name="u2"), dict(name="u3")]
)
Comparison to Core Insert / Update Constructs¶
The bulk methods offer performance that under particular circumstances
can be close to that of using the core Insert
and
Update
constructs in an “executemany” context (for a description
of “executemany”, see Executing Multiple Statements in the Core tutorial).
In order to achieve this, the
Session.bulk_insert_mappings.return_defaults
flag should be disabled so that rows can be batched together. The example
suite in Performance should be carefully studied in order
to gain familiarity with how fast bulk performance can be achieved.
ORM Compatibility¶
The bulk insert / update methods lose a significant amount of functionality versus traditional ORM use. The following is a listing of features that are not available when using these methods:
persistence along
relationship()
linkagessorting of rows within order of dependency; rows are inserted or updated directly in the order in which they are passed to the methods
Session-management on the given objects, including attachment to the session, identity map management.
Functionality related to primary key mutation, ON UPDATE cascade
SQL expression inserts / updates (e.g. Embedding SQL Insert/Update Expressions into a Flush)
ORM events such as
MapperEvents.before_insert()
, etc. The bulk session methods have no event support.
Features that are available include:
INSERTs and UPDATEs of mapped objects
Version identifier support
Multi-table mappings, such as joined-inheritance - however, an object to be inserted across multiple tables either needs to have primary key identifiers fully populated ahead of time, else the
Session.bulk_save_objects.return_defaults
flag must be used, which will greatly reduce the performance benefits