MySQL¶
Support for the MySQL database.
The following table summarizes current support levels for database release versions.
DBAPI Support¶
The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.
Supported Versions and Features¶
SQLAlchemy supports MySQL starting with version 4.1 through modern releases. However, no heroic measures are taken to work around major missing SQL features - if your server version does not support sub-selects, for example, they won’t work in SQLAlchemy either.
See the official MySQL documentation for detailed information about features supported in any given server release.
Connection Timeouts and Disconnects¶
MySQL features an automatic connection close behavior, for connections that
have been idle for a fixed period of time, defaulting to eight hours.
To circumvent having this issue, use
the create_engine.pool_recycle
option which ensures that
a connection will be discarded and replaced with a new one if it has been
present in the pool for a fixed number of seconds:
engine = create_engine('mysql+mysqldb://...', pool_recycle=3600)
For more comprehensive disconnect detection of pooled connections, including accommodation of server restarts and network issues, a pre-ping approach may be employed. See Dealing with Disconnects for current approaches.
See also
Dealing with Disconnects - Background on several techniques for dealing with timed out connections as well as database restarts.
CREATE TABLE arguments including Storage Engines¶
MySQL’s CREATE TABLE syntax includes a wide array of special options,
including ENGINE
, CHARSET
, MAX_ROWS
, ROW_FORMAT
,
INSERT_METHOD
, and many more.
To accommodate the rendering of these arguments, specify the form
mysql_argument_name="value"
. For example, to specify a table with
ENGINE
of InnoDB
, CHARSET
of utf8mb4
, and KEY_BLOCK_SIZE
of 1024
:
Table('mytable', metadata,
Column('data', String(32)),
mysql_engine='InnoDB',
mysql_charset='utf8mb4',
mysql_key_block_size="1024"
)
The MySQL dialect will normally transfer any keyword specified as
mysql_keyword_name
to be rendered as KEYWORD_NAME
in the
CREATE TABLE
statement. A handful of these names will render with a space
instead of an underscore; to support this, the MySQL dialect has awareness of
these particular names, which include DATA DIRECTORY
(e.g. mysql_data_directory
), CHARACTER SET
(e.g.
mysql_character_set
) and INDEX DIRECTORY
(e.g.
mysql_index_directory
).
The most common argument is mysql_engine
, which refers to the storage
engine for the table. Historically, MySQL server installations would default
to MyISAM
for this value, although newer versions may be defaulting
to InnoDB
. The InnoDB
engine is typically preferred for its support
of transactions and foreign keys.
A Table
that is created in a MySQL database with a storage engine
of MyISAM
will be essentially non-transactional, meaning any
INSERT/UPDATE/DELETE statement referring to this table will be invoked as
autocommit. It also will have no support for foreign key constraints; while
the CREATE TABLE
statement accepts foreign key options, when using the
MyISAM
storage engine these arguments are discarded. Reflecting such a
table will also produce no foreign key constraint information.
For fully atomic transactions as well as support for foreign key
constraints, all participating CREATE TABLE
statements must specify a
transactional engine, which in the vast majority of cases is InnoDB
.
See also
The InnoDB Storage Engine - on the MySQL website.
Case Sensitivity and Table Reflection¶
MySQL has inconsistent support for case-sensitive identifier names, basing support on specific details of the underlying operating system. However, it has been observed that no matter what case sensitivity behavior is present, the names of tables in foreign key declarations are always received from the database as all-lower case, making it impossible to accurately reflect a schema where inter-related tables use mixed-case identifier names.
Therefore it is strongly advised that table names be declared as all lower case both within SQLAlchemy as well as on the MySQL database itself, especially if database reflection features are to be used.
Transaction Isolation Level¶
All MySQL dialects support setting of transaction isolation level both via a
dialect-specific parameter create_engine.isolation_level
accepted
by create_engine()
, as well as the
Connection.execution_options.isolation_level
argument as passed to
Connection.execution_options()
.
This feature works by issuing the
command SET SESSION TRANSACTION ISOLATION LEVEL <level>
for each new
connection. For the special AUTOCOMMIT isolation level, DBAPI-specific
techniques are used.
To set isolation level using create_engine()
:
engine = create_engine(
"mysql://scott:tiger@localhost/test",
isolation_level="READ UNCOMMITTED"
)
To set using per-connection execution options:
connection = engine.connect()
connection = connection.execution_options(
isolation_level="READ COMMITTED"
)
Valid values for isolation_level
include:
READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE
AUTOCOMMIT
The special AUTOCOMMIT
value makes use of the various “autocommit”
attributes provided by specific DBAPIs, and is currently supported by
MySQLdb, MySQL-Client, MySQL-Connector Python, and PyMySQL. Using it,
the MySQL connection will return true for the value of
SELECT @@autocommit;
.
AUTO_INCREMENT Behavior¶
When creating tables, SQLAlchemy will automatically set AUTO_INCREMENT
on
the first Integer
primary key column which is not marked as a
foreign key:
>>> t = Table('mytable', metadata,
... Column('mytable_id', Integer, primary_key=True)
... )
>>> t.create()
CREATE TABLE mytable (
id INTEGER NOT NULL AUTO_INCREMENT,
PRIMARY KEY (id)
)
You can disable this behavior by passing False
to the
Column.autoincrement
argument of Column
.
This flag
can also be used to enable auto-increment on a secondary column in a
multi-column key for some storage engines:
Table('mytable', metadata,
Column('gid', Integer, primary_key=True, autoincrement=False),
Column('id', Integer, primary_key=True)
)
Server Side Cursors¶
Server-side cursor support is available for the MySQLdb and PyMySQL dialects.
From a MySQL point of view this means that the MySQLdb.cursors.SSCursor
or
pymysql.cursors.SSCursor
class is used when building up the cursor which
will receive results. The most typical way of invoking this feature is via the
Connection.execution_options.stream_results
connection execution
option. Server side cursors can also be enabled for all SELECT statements
unconditionally by passing server_side_cursors=True
to
create_engine()
.
New in version 1.1.4: - added server-side cursor support.
Unicode¶
Charset Selection¶
Most MySQL DBAPIs offer the option to set the client character set for
a connection. This is typically delivered using the charset
parameter
in the URL, such as:
e = create_engine(
"mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4")
This charset is the client character set for the connection. Some
MySQL DBAPIs will default this to a value such as latin1
, and some
will make use of the default-character-set
setting in the my.cnf
file as well. Documentation for the DBAPI in use should be consulted
for specific behavior.
The encoding used for Unicode has traditionally been 'utf8'
. However,
for MySQL versions 5.5.3 on forward, a new MySQL-specific encoding
'utf8mb4'
has been introduced, and as of MySQL 8.0 a warning is emitted
by the server if plain utf8
is specified within any server-side
directives, replaced with utf8mb3
. The rationale for this new encoding
is due to the fact that MySQL’s legacy utf-8 encoding only supports
codepoints up to three bytes instead of four. Therefore,
when communicating with a MySQL database
that includes codepoints more than three bytes in size,
this new charset is preferred, if supported by both the database as well
as the client DBAPI, as in:
e = create_engine(
"mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4")
All modern DBAPIs should support the utf8mb4
charset.
In order to use utf8mb4
encoding for a schema that was created with legacy
utf8
, changes to the MySQL schema and/or server configuration may be
required.
See also
The utf8mb4 Character Set - in the MySQL documentation
Dealing with Binary Data Warnings and Unicode¶
MySQL versions 5.6, 5.7 and later (not MariaDB at the time of this writing) now emit a warning when attempting to pass binary data to the database, while a character set encoding is also in place, when the binary data itself is not valid for that encoding:
default.py:509: Warning: (1300, "Invalid utf8mb4 character string:
'F9876A'")
cursor.execute(statement, parameters)
This warning is due to the fact that the MySQL client library is attempting to
interpret the binary string as a unicode object even if a datatype such
as LargeBinary
is in use. To resolve this, the SQL statement requires
a binary “character set introducer” be present before any non-NULL value
that renders like this:
INSERT INTO table (data) VALUES (_binary %s)
These character set introducers are provided by the DBAPI driver, assuming the
use of mysqlclient or PyMySQL (both of which are recommended). Add the query
string parameter binary_prefix=true
to the URL to repair this warning:
# mysqlclient
engine = create_engine(
"mysql+mysqldb://scott:tiger@localhost/test?charset=utf8mb4&binary_prefix=true")
# PyMySQL
engine = create_engine(
"mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4&binary_prefix=true")
The binary_prefix
flag may or may not be supported by other MySQL drivers.
SQLAlchemy itself cannot render this _binary
prefix reliably, as it does
not work with the NULL value, which is valid to be sent as a bound parameter.
As the MySQL driver renders parameters directly into the SQL string, it’s the
most efficient place for this additional keyword to be passed.
See also
Character set introducers - on the MySQL website
ANSI Quoting Style¶
MySQL features two varieties of identifier “quoting style”, one using
backticks and the other using quotes, e.g. `some_identifier`
vs.
"some_identifier"
. All MySQL dialects detect which version
is in use by checking the value of sql_mode
when a connection is first
established with a particular Engine
.
This quoting style comes
into play when rendering table and column names as well as when reflecting
existing database structures. The detection is entirely automatic and
no special configuration is needed to use either quoting style.
MySQL SQL Extensions¶
Many of the MySQL SQL extensions are handled through SQLAlchemy’s generic function and operator support:
table.select(table.c.password==func.md5('plaintext'))
table.select(table.c.username.op('regexp')('^[a-d]'))
And of course any valid MySQL statement can be executed as a string as well.
Some limited direct support for MySQL extensions to SQL is currently available.
INSERT..ON DUPLICATE KEY UPDATE: See INSERT…ON DUPLICATE KEY UPDATE (Upsert)
SELECT pragma, use
Select.prefix_with()
andQuery.prefix_with()
:select(...).prefix_with(['HIGH_PRIORITY', 'SQL_SMALL_RESULT'])
UPDATE with LIMIT:
update(..., mysql_limit=10)
optimizer hints, use
Select.prefix_with()
andQuery.prefix_with()
:select(...).prefix_with("/*+ NO_RANGE_OPTIMIZATION(t4 PRIMARY) */")
index hints, use
Select.with_hint()
andQuery.with_hint()
:select(...).with_hint(some_table, "USE INDEX xyz")
INSERT…ON DUPLICATE KEY UPDATE (Upsert)¶
MySQL allows “upserts” (update or insert)
of rows into a table via the ON DUPLICATE KEY UPDATE
clause of the
INSERT
statement. A candidate row will only be inserted if that row does
not match an existing primary or unique key in the table; otherwise, an UPDATE
will be performed. The statement allows for separate specification of the
values to INSERT versus the values for UPDATE.
SQLAlchemy provides ON DUPLICATE KEY UPDATE
support via the MySQL-specific
insert()
function, which provides
the generative method Insert.on_duplicate_key_update()
:
from sqlalchemy.dialects.mysql import insert
insert_stmt = insert(my_table).values(
id='some_existing_id',
data='inserted value')
on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update(
data=insert_stmt.inserted.data,
status='U'
)
conn.execute(on_duplicate_key_stmt)
Unlike PostgreSQL’s “ON CONFLICT” phrase, the “ON DUPLICATE KEY UPDATE” phrase will always match on any primary key or unique key, and will always perform an UPDATE if there’s a match; there are no options for it to raise an error or to skip performing an UPDATE.
ON DUPLICATE KEY UPDATE
is used to perform an update of the already
existing row, using any combination of new values as well as values
from the proposed insertion. These values are normally specified using
keyword arguments passed to the
Insert.on_duplicate_key_update()
given column key values (usually the name of the column, unless it
specifies Column.key
) as keys and literal or SQL expressions
as values:
on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update(
data="some data",
updated_at=func.current_timestamp(),
)
In a manner similar to that of UpdateBase.values()
, other parameter
forms are accepted, including a single dictionary:
on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update(
{"data": "some data", "updated_at": func.current_timestamp()},
)
as well as a list of 2-tuples, which will automatically provide
a parameter-ordered UPDATE statement in a manner similar to that described
at Parameter-Ordered Updates. Unlike the Update
object,
no special flag is needed to specify the intent since the argument form is
this context is unambiguous:
on_duplicate_key_stmt = insert_stmt.on_duplicate_key_update(
[
("data", "some data"),
("updated_at", func.current_timestamp()),
],
)
Changed in version 1.3: support for parameter-ordered UPDATE clause within MySQL ON DUPLICATE KEY UPDATE
Warning
The Insert.on_duplicate_key_update()
method does not take into
account Python-side default UPDATE values or generation functions, e.g.
e.g. those specified using Column.onupdate
.
These values will not be exercised for an ON DUPLICATE KEY style of UPDATE,
unless they are manually specified explicitly in the parameters.
In order to refer to the proposed insertion row, the special alias
Insert.inserted
is available as an attribute on
the Insert
object; this object is a
ColumnCollection
which contains all columns of the target
table:
from sqlalchemy.dialects.mysql import insert
stmt = insert(my_table).values(
id='some_id',
data='inserted value',
author='jlh')
do_update_stmt = stmt.on_duplicate_key_update(
data="updated value",
author=stmt.inserted.author
)
conn.execute(do_update_stmt)
When rendered, the “inserted” namespace will produce the expression
VALUES(<columnname>)
.
New in version 1.2: Added support for MySQL ON DUPLICATE KEY UPDATE clause
rowcount Support¶
SQLAlchemy standardizes the DBAPI cursor.rowcount
attribute to be the
usual definition of “number of rows matched by an UPDATE or DELETE” statement.
This is in contradiction to the default setting on most MySQL DBAPI drivers,
which is “number of rows actually modified/deleted”. For this reason, the
SQLAlchemy MySQL dialects always add the constants.CLIENT.FOUND_ROWS
flag, or whatever is equivalent for the target dialect, upon connection.
This setting is currently hardcoded.
See also
CAST Support¶
MySQL documents the CAST operator as available in version 4.0.2. When using
the SQLAlchemy cast()
function, SQLAlchemy
will not render the CAST token on MySQL before this version, based on server
version detection, instead rendering the internal expression directly.
CAST may still not be desirable on an early MySQL version post-4.0.2, as it didn’t add all datatype support until 4.1.1. If your application falls into this narrow area, the behavior of CAST can be controlled using the Custom SQL Constructs and Compilation Extension system, as per the recipe below:
from sqlalchemy.sql.expression import Cast
from sqlalchemy.ext.compiler import compiles
@compiles(Cast, 'mysql')
def _check_mysql_version(element, compiler, **kw):
if compiler.dialect.server_version_info < (4, 1, 0):
return compiler.process(element.clause, **kw)
else:
return compiler.visit_cast(element, **kw)
The above function, which only needs to be declared once
within an application, overrides the compilation of the
cast()
construct to check for version 4.1.0 before
fully rendering CAST; else the internal element of the
construct is rendered directly.
MySQL Specific Index Options¶
MySQL-specific extensions to the Index
construct are available.
Index Length¶
MySQL provides an option to create index entries with a certain length, where
“length” refers to the number of characters or bytes in each value which will
become part of the index. SQLAlchemy provides this feature via the
mysql_length
parameter:
Index('my_index', my_table.c.data, mysql_length=10)
Index('a_b_idx', my_table.c.a, my_table.c.b, mysql_length={'a': 4,
'b': 9})
Prefix lengths are given in characters for nonbinary string types and in bytes for binary string types. The value passed to the keyword argument must be either an integer (and, thus, specify the same prefix length value for all columns of the index) or a dict in which keys are column names and values are prefix length values for corresponding columns. MySQL only allows a length for a column of an index if it is for a CHAR, VARCHAR, TEXT, BINARY, VARBINARY and BLOB.
Index Prefixes¶
MySQL storage engines permit you to specify an index prefix when creating
an index. SQLAlchemy provides this feature via the
mysql_prefix
parameter on Index
:
Index('my_index', my_table.c.data, mysql_prefix='FULLTEXT')
The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX, so it must be a valid index prefix for your MySQL storage engine.
New in version 1.1.5.
See also
CREATE INDEX - MySQL documentation
Index Types¶
Some MySQL storage engines permit you to specify an index type when creating
an index or primary key constraint. SQLAlchemy provides this feature via the
mysql_using
parameter on Index
:
Index('my_index', my_table.c.data, mysql_using='hash')
As well as the mysql_using
parameter on PrimaryKeyConstraint
:
PrimaryKeyConstraint("data", mysql_using='hash')
The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX or PRIMARY KEY clause, so it must be a valid index type for your MySQL storage engine.
More information can be found at:
Index Parsers¶
CREATE FULLTEXT INDEX in MySQL also supports a “WITH PARSER” option. This
is available using the keyword argument mysql_with_parser
:
Index(
'my_index', my_table.c.data,
mysql_prefix='FULLTEXT', mysql_with_parser="ngram")
New in version 1.3.
MySQL Foreign Keys¶
MySQL’s behavior regarding foreign keys has some important caveats.
Foreign Key Arguments to Avoid¶
MySQL does not support the foreign key arguments “DEFERRABLE”, “INITIALLY”,
or “MATCH”. Using the deferrable
or initially
keyword argument with
ForeignKeyConstraint
or ForeignKey
will have the effect of
these keywords being rendered in a DDL expression, which will then raise an
error on MySQL. In order to use these keywords on a foreign key while having
them ignored on a MySQL backend, use a custom compile rule:
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.schema import ForeignKeyConstraint
@compiles(ForeignKeyConstraint, "mysql")
def process(element, compiler, **kw):
element.deferrable = element.initially = None
return compiler.visit_foreign_key_constraint(element, **kw)
Changed in version 0.9.0: - the MySQL backend no longer silently ignores
the deferrable
or initially
keyword arguments of
ForeignKeyConstraint
and ForeignKey
.
The “MATCH” keyword is in fact more insidious, and is explicitly disallowed by SQLAlchemy in conjunction with the MySQL backend. This argument is silently ignored by MySQL, but in addition has the effect of ON UPDATE and ON DELETE options also being ignored by the backend. Therefore MATCH should never be used with the MySQL backend; as is the case with DEFERRABLE and INITIALLY, custom compilation rules can be used to correct a MySQL ForeignKeyConstraint at DDL definition time.
New in version 0.9.0: - the MySQL backend will raise a
CompileError
when the match
keyword is used with
ForeignKeyConstraint
or ForeignKey
.
Reflection of Foreign Key Constraints¶
Not all MySQL storage engines support foreign keys. When using the
very common MyISAM
MySQL storage engine, the information loaded by table
reflection will not include foreign keys. For these tables, you may supply a
ForeignKeyConstraint
at reflection time:
Table('mytable', metadata,
ForeignKeyConstraint(['other_id'], ['othertable.other_id']),
autoload=True
)
MySQL Unique Constraints and Reflection¶
SQLAlchemy supports both the Index
construct with the
flag unique=True
, indicating a UNIQUE index, as well as the
UniqueConstraint
construct, representing a UNIQUE constraint.
Both objects/syntaxes are supported by MySQL when emitting DDL to create
these constraints. However, MySQL does not have a unique constraint
construct that is separate from a unique index; that is, the “UNIQUE”
constraint on MySQL is equivalent to creating a “UNIQUE INDEX”.
When reflecting these constructs, the
Inspector.get_indexes()
and the Inspector.get_unique_constraints()
methods will both
return an entry for a UNIQUE index in MySQL. However, when performing
full table reflection using Table(..., autoload=True)
,
the UniqueConstraint
construct is
not part of the fully reflected Table
construct under any
circumstances; this construct is always represented by a Index
with the unique=True
setting present in the Table.indexes
collection.
TIMESTAMP / DATETIME issues¶
Rendering ON UPDATE CURRENT TIMESTAMP for MySQL’s explicit_defaults_for_timestamp¶
MySQL has historically expanded the DDL for the TIMESTAMP
datatype into the phrase “TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP”, which includes non-standard SQL that automatically updates
the column with the current timestamp when an UPDATE occurs, eliminating the
usual need to use a trigger in such a case where server-side update changes are
desired.
MySQL 5.6 introduced a new flag explicit_defaults_for_timestamp which disables the above behavior,
and in MySQL 8 this flag defaults to true, meaning in order to get a MySQL
“on update timestamp” without changing this flag, the above DDL must be
rendered explicitly. Additionally, the same DDL is valid for use of the
DATETIME
datatype as well.
SQLAlchemy’s MySQL dialect does not yet have an option to generate
MySQL’s “ON UPDATE CURRENT_TIMESTAMP” clause, noting that this is not a general
purpose “ON UPDATE” as there is no such syntax in standard SQL. SQLAlchemy’s
Column.server_onupdate
parameter is currently not related
to this special MySQL behavior.
To generate this DDL, make use of the Column.server_default
parameter and pass a textual clause that also includes the ON UPDATE clause:
from sqlalchemy import Table, MetaData, Column, Integer, String, TIMESTAMP
from sqlalchemy import text
metadata = MetaData()
mytable = Table(
"mytable",
metadata,
Column('id', Integer, primary_key=True),
Column('data', String(50)),
Column(
'last_updated',
TIMESTAMP,
server_default=text("CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP")
)
)
The same instructions apply to use of the DateTime
and
DATETIME
datatypes:
from sqlalchemy import DateTime
mytable = Table(
"mytable",
metadata,
Column('id', Integer, primary_key=True),
Column('data', String(50)),
Column(
'last_updated',
DateTime,
server_default=text("CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP")
)
)
Even though the Column.server_onupdate
feature does not
generate this DDL, it still may be desirable to signal to the ORM that this
updated value should be fetched. This syntax looks like the following:
from sqlalchemy.schema import FetchedValue
class MyClass(Base):
__tablename__ = 'mytable'
id = Column(Integer, primary_key=True)
data = Column(String(50))
last_updated = Column(
TIMESTAMP,
server_default=text("CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP"),
server_onupdate=FetchedValue()
)
TIMESTAMP Columns and NULL¶
MySQL historically enforces that a column which specifies the TIMESTAMP datatype implicitly includes a default value of CURRENT_TIMESTAMP, even though this is not stated, and additionally sets the column as NOT NULL, the opposite behavior vs. that of all other datatypes:
mysql> CREATE TABLE ts_test (
-> a INTEGER,
-> b INTEGER NOT NULL,
-> c TIMESTAMP,
-> d TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
-> e TIMESTAMP NULL);
Query OK, 0 rows affected (0.03 sec)
mysql> SHOW CREATE TABLE ts_test;
+---------+-----------------------------------------------------
| Table | Create Table
+---------+-----------------------------------------------------
| ts_test | CREATE TABLE `ts_test` (
`a` int(11) DEFAULT NULL,
`b` int(11) NOT NULL,
`c` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`d` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
`e` timestamp NULL DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
Above, we see that an INTEGER column defaults to NULL, unless it is specified with NOT NULL. But when the column is of type TIMESTAMP, an implicit default of CURRENT_TIMESTAMP is generated which also coerces the column to be a NOT NULL, even though we did not specify it as such.
This behavior of MySQL can be changed on the MySQL side using the explicit_defaults_for_timestamp configuration flag introduced in MySQL 5.6. With this server setting enabled, TIMESTAMP columns behave like any other datatype on the MySQL side with regards to defaults and nullability.
However, to accommodate the vast majority of MySQL databases that do not
specify this new flag, SQLAlchemy emits the “NULL” specifier explicitly with
any TIMESTAMP column that does not specify nullable=False
. In order to
accommodate newer databases that specify explicit_defaults_for_timestamp
,
SQLAlchemy also emits NOT NULL for TIMESTAMP columns that do specify
nullable=False
. The following example illustrates:
from sqlalchemy import MetaData, Integer, Table, Column, text
from sqlalchemy.dialects.mysql import TIMESTAMP
m = MetaData()
t = Table('ts_test', m,
Column('a', Integer),
Column('b', Integer, nullable=False),
Column('c', TIMESTAMP),
Column('d', TIMESTAMP, nullable=False)
)
from sqlalchemy import create_engine
e = create_engine("mysql://scott:tiger@localhost/test", echo=True)
m.create_all(e)
output:
CREATE TABLE ts_test (
a INTEGER,
b INTEGER NOT NULL,
c TIMESTAMP NULL,
d TIMESTAMP NOT NULL
)
Changed in version 1.0.0: - SQLAlchemy now renders NULL or NOT NULL in all
cases for TIMESTAMP columns, to accommodate
explicit_defaults_for_timestamp
. Prior to this version, it will
not render “NOT NULL” for a TIMESTAMP column that is nullable=False
.
MySQL Data Types¶
As with all SQLAlchemy dialects, all UPPERCASE types that are known to be valid with MySQL are importable from the top level dialect:
from sqlalchemy.dialects.mysql import \
BIGINT, BINARY, BIT, BLOB, BOOLEAN, CHAR, DATE, \
DATETIME, DECIMAL, DECIMAL, DOUBLE, ENUM, FLOAT, INTEGER, \
LONGBLOB, LONGTEXT, MEDIUMBLOB, MEDIUMINT, MEDIUMTEXT, NCHAR, \
NUMERIC, NVARCHAR, REAL, SET, SMALLINT, TEXT, TIME, TIMESTAMP, \
TINYBLOB, TINYINT, TINYTEXT, VARBINARY, VARCHAR, YEAR
Types which are specific to MySQL, or have MySQL-specific construction arguments, are as follows:
Object Name | Description |
---|---|
MySQL BIGINTEGER type. |
|
The SQL BINARY type. |
|
MySQL BIT type. |
|
The SQL BLOB type. |
|
The SQL BOOLEAN type. |
|
MySQL CHAR type, for fixed-length character data. |
|
The SQL DATE type. |
|
MySQL DATETIME type. |
|
MySQL DECIMAL type. |
|
MySQL DOUBLE type. |
|
MySQL ENUM type. |
|
MySQL FLOAT type. |
|
MySQL INTEGER type. |
|
MySQL JSON type. |
|
MySQL LONGBLOB type, for binary data up to 2^32 bytes. |
|
MySQL LONGTEXT type, for text up to 2^32 characters. |
|
MySQL MEDIUMBLOB type, for binary data up to 2^24 bytes. |
|
MySQL MEDIUMINTEGER type. |
|
MySQL MEDIUMTEXT type, for text up to 2^24 characters. |
|
MySQL NCHAR type. |
|
MySQL NUMERIC type. |
|
MySQL NVARCHAR type. |
|
MySQL REAL type. |
|
MySQL SET type. |
|
MySQL SMALLINTEGER type. |
|
MySQL TEXT type, for text up to 2^16 characters. |
|
MySQL TIME type. |
|
MySQL TIMESTAMP type. |
|
MySQL TINYBLOB type, for binary data up to 2^8 bytes. |
|
MySQL TINYINT type. |
|
MySQL TINYTEXT type, for text up to 2^8 characters. |
|
The SQL VARBINARY type. |
|
MySQL VARCHAR type, for variable-length character data. |
|
MySQL YEAR type, for single byte storage of years 1901-2155. |
- class sqlalchemy.dialects.mysql.BIGINT(display_width=None, **kw)¶
MySQL BIGINTEGER type.
Members
Class signature
class
sqlalchemy.dialects.mysql.BIGINT
(sqlalchemy.dialects.mysql.types._IntegerType
,sqlalchemy.types.BIGINT
)-
method
sqlalchemy.dialects.mysql.BIGINT.
__init__(display_width=None, **kw)¶ Construct a BIGINTEGER.
- Parameters:
display_width – Optional, maximum display width for this number.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.BINARY(length=None)¶
The SQL BINARY type.
Class signature
class
sqlalchemy.dialects.mysql.BINARY
(sqlalchemy.types._Binary
)
- class sqlalchemy.dialects.mysql.BIT(length=None)¶
MySQL BIT type.
This type is for MySQL 5.0.3 or greater for MyISAM, and 5.0.5 or greater for MyISAM, MEMORY, InnoDB and BDB. For older versions, use a MSTinyInteger() type.
Members
Class signature
class
sqlalchemy.dialects.mysql.BIT
(sqlalchemy.types.TypeEngine
)-
method
sqlalchemy.dialects.mysql.BIT.
__init__(length=None)¶ Construct a BIT.
- Parameters:
length – Optional, number of bits.
-
method
- class sqlalchemy.dialects.mysql.BLOB(length=None)¶
The SQL BLOB type.
Members
Class signature
class
sqlalchemy.dialects.mysql.BLOB
(sqlalchemy.types.LargeBinary
)-
method
sqlalchemy.dialects.mysql.BLOB.
__init__(length=None)¶ inherited from the
sqlalchemy.types.LargeBinary.__init__
method ofLargeBinary
Construct a LargeBinary type.
- Parameters:
length – optional, a length for the column for use in DDL statements, for those binary types that accept a length, such as the MySQL BLOB type.
-
method
- class sqlalchemy.dialects.mysql.BOOLEAN(create_constraint=True, name=None, _create_events=True)¶
The SQL BOOLEAN type.
Members
Class signature
class
sqlalchemy.dialects.mysql.BOOLEAN
(sqlalchemy.types.Boolean
)-
method
sqlalchemy.dialects.mysql.BOOLEAN.
__init__(create_constraint=True, name=None, _create_events=True)¶ inherited from the
sqlalchemy.types.Boolean.__init__
method ofBoolean
Construct a Boolean.
- Parameters:
create_constraint – defaults to True. If the boolean is generated as an int/smallint, also create a CHECK constraint on the table that ensures 1 or 0 as a value.
name – if a CHECK constraint is generated, specify the name of the constraint.
-
method
- class sqlalchemy.dialects.mysql.CHAR(length=None, **kwargs)¶
MySQL CHAR type, for fixed-length character data.
Members
Class signature
class
sqlalchemy.dialects.mysql.CHAR
(sqlalchemy.dialects.mysql.types._StringType
,sqlalchemy.types.CHAR
)-
method
sqlalchemy.dialects.mysql.CHAR.
__init__(length=None, **kwargs)¶ Construct a CHAR.
- Parameters:
length – Maximum data length, in characters.
binary – Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data.
collation – Optional, request a particular collation. Must be compatible with the national character set.
-
method
- class sqlalchemy.dialects.mysql.DATE¶
The SQL DATE type.
Class signature
class
sqlalchemy.dialects.mysql.DATE
(sqlalchemy.types.Date
)
- class sqlalchemy.dialects.mysql.DATETIME(timezone=False, fsp=None)¶
MySQL DATETIME type.
Members
Class signature
class
sqlalchemy.dialects.mysql.DATETIME
(sqlalchemy.types.DATETIME
)-
method
sqlalchemy.dialects.mysql.DATETIME.
__init__(timezone=False, fsp=None)¶ Construct a MySQL DATETIME type.
- Parameters:
timezone – not used by the MySQL dialect.
fsp –
fractional seconds precision value. MySQL 5.6.4 supports storage of fractional seconds; this parameter will be used when emitting DDL for the DATETIME type.
Note
DBAPI driver support for fractional seconds may be limited; current support includes MySQL Connector/Python.
-
method
- class sqlalchemy.dialects.mysql.DECIMAL(precision=None, scale=None, asdecimal=True, **kw)¶
MySQL DECIMAL type.
Members
Class signature
class
sqlalchemy.dialects.mysql.DECIMAL
(sqlalchemy.dialects.mysql.types._NumericType
,sqlalchemy.types.DECIMAL
)-
method
sqlalchemy.dialects.mysql.DECIMAL.
__init__(precision=None, scale=None, asdecimal=True, **kw)¶ Construct a DECIMAL.
- Parameters:
precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
scale – The number of digits after the decimal point.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.DOUBLE(precision=None, scale=None, asdecimal=True, **kw)¶
MySQL DOUBLE type.
Members
Class signature
class
sqlalchemy.dialects.mysql.DOUBLE
(sqlalchemy.dialects.mysql.types._FloatType
)-
method
sqlalchemy.dialects.mysql.DOUBLE.
__init__(precision=None, scale=None, asdecimal=True, **kw)¶ Construct a DOUBLE.
Note
The
DOUBLE
type by default converts from float to Decimal, using a truncation that defaults to 10 digits. Specify eitherscale=n
ordecimal_return_scale=n
in order to change this scale, orasdecimal=False
to return values directly as Python floating points.- Parameters:
precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
scale – The number of digits after the decimal point.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.ENUM(*enums, **kw)¶
MySQL ENUM type.
Members
Class signature
class
sqlalchemy.dialects.mysql.ENUM
(sqlalchemy.types.NativeForEmulated
,sqlalchemy.types.Enum
,sqlalchemy.dialects.mysql.enumerated._EnumeratedValues
)-
method
sqlalchemy.dialects.mysql.ENUM.
__init__(*enums, **kw)¶ Construct an ENUM.
E.g.:
Column('myenum', ENUM("foo", "bar", "baz"))
- Parameters:
enums –
The range of valid values for this ENUM. Values will be quoted when generating the schema according to the quoting flag (see below). This object may also be a PEP-435-compliant enumerated type.
strict –
This flag has no effect.
Changed in version The: MySQL ENUM type as well as the base Enum type now validates all Python data values.
charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
ascii – Defaults to False: short-hand for the
latin1
character set, generates ASCII in schema.unicode – Defaults to False: short-hand for the
ucs2
character set, generates UNICODE in schema.binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
quoting –
Defaults to ‘auto’: automatically determine enum value quoting. If all enum values are surrounded by the same quoting character, then use ‘quoted’ mode. Otherwise, use ‘unquoted’ mode.
’quoted’: values in enums are already quoted, they will be used directly when generating the schema - this usage is deprecated.
’unquoted’: values in enums are not quoted, they will be escaped and surrounded by single quotes when generating the schema.
Previous versions of this type always required manually quoted values to be supplied; future versions will always quote the string literals for you. This is a transitional option.
-
method
- class sqlalchemy.dialects.mysql.FLOAT(precision=None, scale=None, asdecimal=False, **kw)¶
MySQL FLOAT type.
Members
Class signature
class
sqlalchemy.dialects.mysql.FLOAT
(sqlalchemy.dialects.mysql.types._FloatType
,sqlalchemy.types.FLOAT
)-
method
sqlalchemy.dialects.mysql.FLOAT.
__init__(precision=None, scale=None, asdecimal=False, **kw)¶ Construct a FLOAT.
- Parameters:
precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
scale – The number of digits after the decimal point.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.INTEGER(display_width=None, **kw)¶
MySQL INTEGER type.
Members
Class signature
class
sqlalchemy.dialects.mysql.INTEGER
(sqlalchemy.dialects.mysql.types._IntegerType
,sqlalchemy.types.INTEGER
)-
method
sqlalchemy.dialects.mysql.INTEGER.
__init__(display_width=None, **kw)¶ Construct an INTEGER.
- Parameters:
display_width – Optional, maximum display width for this number.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.JSON(none_as_null=False)¶
MySQL JSON type.
MySQL supports JSON as of version 5.7. MariaDB supports JSON (as an alias for LONGTEXT) as of version 10.2.
The
JSON
type supports persistence of JSON values as well as the core index operations provided byJSON
datatype, by adapting the operations to render theJSON_EXTRACT
function at the database level.New in version 1.1.
Class signature
class
sqlalchemy.dialects.mysql.JSON
(sqlalchemy.types.JSON
)
- class sqlalchemy.dialects.mysql.LONGBLOB(length=None)¶
MySQL LONGBLOB type, for binary data up to 2^32 bytes.
Class signature
class
sqlalchemy.dialects.mysql.LONGBLOB
(sqlalchemy.types._Binary
)
- class sqlalchemy.dialects.mysql.LONGTEXT(**kwargs)¶
MySQL LONGTEXT type, for text up to 2^32 characters.
Members
Class signature
class
sqlalchemy.dialects.mysql.LONGTEXT
(sqlalchemy.dialects.mysql.types._StringType
)-
method
sqlalchemy.dialects.mysql.LONGTEXT.
__init__(**kwargs)¶ Construct a LONGTEXT.
- Parameters:
charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
ascii – Defaults to False: short-hand for the
latin1
character set, generates ASCII in schema.unicode – Defaults to False: short-hand for the
ucs2
character set, generates UNICODE in schema.national – Optional. If true, use the server’s configured national character set.
binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
-
method
- class sqlalchemy.dialects.mysql.MEDIUMBLOB(length=None)¶
MySQL MEDIUMBLOB type, for binary data up to 2^24 bytes.
Class signature
class
sqlalchemy.dialects.mysql.MEDIUMBLOB
(sqlalchemy.types._Binary
)
- class sqlalchemy.dialects.mysql.MEDIUMINT(display_width=None, **kw)¶
MySQL MEDIUMINTEGER type.
Members
Class signature
class
sqlalchemy.dialects.mysql.MEDIUMINT
(sqlalchemy.dialects.mysql.types._IntegerType
)-
method
sqlalchemy.dialects.mysql.MEDIUMINT.
__init__(display_width=None, **kw)¶ Construct a MEDIUMINTEGER
- Parameters:
display_width – Optional, maximum display width for this number.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.MEDIUMTEXT(**kwargs)¶
MySQL MEDIUMTEXT type, for text up to 2^24 characters.
Members
Class signature
class
sqlalchemy.dialects.mysql.MEDIUMTEXT
(sqlalchemy.dialects.mysql.types._StringType
)-
method
sqlalchemy.dialects.mysql.MEDIUMTEXT.
__init__(**kwargs)¶ Construct a MEDIUMTEXT.
- Parameters:
charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
ascii – Defaults to False: short-hand for the
latin1
character set, generates ASCII in schema.unicode – Defaults to False: short-hand for the
ucs2
character set, generates UNICODE in schema.national – Optional. If true, use the server’s configured national character set.
binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
-
method
- class sqlalchemy.dialects.mysql.NCHAR(length=None, **kwargs)¶
MySQL NCHAR type.
For fixed-length character data in the server’s configured national character set.
Members
Class signature
class
sqlalchemy.dialects.mysql.NCHAR
(sqlalchemy.dialects.mysql.types._StringType
,sqlalchemy.types.NCHAR
)-
method
sqlalchemy.dialects.mysql.NCHAR.
__init__(length=None, **kwargs)¶ Construct an NCHAR.
- Parameters:
length – Maximum data length, in characters.
binary – Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data.
collation – Optional, request a particular collation. Must be compatible with the national character set.
-
method
- class sqlalchemy.dialects.mysql.NUMERIC(precision=None, scale=None, asdecimal=True, **kw)¶
MySQL NUMERIC type.
Members
Class signature
class
sqlalchemy.dialects.mysql.NUMERIC
(sqlalchemy.dialects.mysql.types._NumericType
,sqlalchemy.types.NUMERIC
)-
method
sqlalchemy.dialects.mysql.NUMERIC.
__init__(precision=None, scale=None, asdecimal=True, **kw)¶ Construct a NUMERIC.
- Parameters:
precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
scale – The number of digits after the decimal point.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.NVARCHAR(length=None, **kwargs)¶
MySQL NVARCHAR type.
For variable-length character data in the server’s configured national character set.
Members
Class signature
class
sqlalchemy.dialects.mysql.NVARCHAR
(sqlalchemy.dialects.mysql.types._StringType
,sqlalchemy.types.NVARCHAR
)-
method
sqlalchemy.dialects.mysql.NVARCHAR.
__init__(length=None, **kwargs)¶ Construct an NVARCHAR.
- Parameters:
length – Maximum data length, in characters.
binary – Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data.
collation – Optional, request a particular collation. Must be compatible with the national character set.
-
method
- class sqlalchemy.dialects.mysql.REAL(precision=None, scale=None, asdecimal=True, **kw)¶
MySQL REAL type.
Members
Class signature
class
sqlalchemy.dialects.mysql.REAL
(sqlalchemy.dialects.mysql.types._FloatType
,sqlalchemy.types.REAL
)-
method
sqlalchemy.dialects.mysql.REAL.
__init__(precision=None, scale=None, asdecimal=True, **kw)¶ Construct a REAL.
Note
The
REAL
type by default converts from float to Decimal, using a truncation that defaults to 10 digits. Specify eitherscale=n
ordecimal_return_scale=n
in order to change this scale, orasdecimal=False
to return values directly as Python floating points.- Parameters:
precision – Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server.
scale – The number of digits after the decimal point.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.SET(*values, **kw)¶
MySQL SET type.
Members
Class signature
class
sqlalchemy.dialects.mysql.SET
(sqlalchemy.dialects.mysql.enumerated._EnumeratedValues
)-
method
sqlalchemy.dialects.mysql.SET.
__init__(*values, **kw)¶ Construct a SET.
E.g.:
Column('myset', SET("foo", "bar", "baz"))
The list of potential values is required in the case that this set will be used to generate DDL for a table, or if the
SET.retrieve_as_bitwise
flag is set to True.- Parameters:
values – The range of valid values for this SET.
convert_unicode – Same flag as that of
String.convert_unicode
.collation – same as that of
String.collation
charset – same as that of
VARCHAR.charset
.ascii – same as that of
VARCHAR.ascii
.unicode – same as that of
VARCHAR.unicode
.binary – same as that of
VARCHAR.binary
.quoting –
Defaults to ‘auto’: automatically determine set value quoting. If all values are surrounded by the same quoting character, then use ‘quoted’ mode. Otherwise, use ‘unquoted’ mode.
’quoted’: values in enums are already quoted, they will be used directly when generating the schema - this usage is deprecated.
’unquoted’: values in enums are not quoted, they will be escaped and surrounded by single quotes when generating the schema.
Previous versions of this type always required manually quoted values to be supplied; future versions will always quote the string literals for you. This is a transitional option.
New in version 0.9.0.
retrieve_as_bitwise –
if True, the data for the set type will be persisted and selected using an integer value, where a set is coerced into a bitwise mask for persistence. MySQL allows this mode which has the advantage of being able to store values unambiguously, such as the blank string
''
. The datatype will appear as the expressioncol + 0
in a SELECT statement, so that the value is coerced into an integer value in result sets. This flag is required if one wishes to persist a set that can store the blank string''
as a value.Warning
When using
SET.retrieve_as_bitwise
, it is essential that the list of set values is expressed in the exact same order as exists on the MySQL database.New in version 1.0.0.
-
method
- class sqlalchemy.dialects.mysql.SMALLINT(display_width=None, **kw)¶
MySQL SMALLINTEGER type.
Members
Class signature
class
sqlalchemy.dialects.mysql.SMALLINT
(sqlalchemy.dialects.mysql.types._IntegerType
,sqlalchemy.types.SMALLINT
)-
method
sqlalchemy.dialects.mysql.SMALLINT.
__init__(display_width=None, **kw)¶ Construct a SMALLINTEGER.
- Parameters:
display_width – Optional, maximum display width for this number.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.TEXT(length=None, **kw)¶
MySQL TEXT type, for text up to 2^16 characters.
Members
Class signature
class
sqlalchemy.dialects.mysql.TEXT
(sqlalchemy.dialects.mysql.types._StringType
,sqlalchemy.types.TEXT
)-
method
sqlalchemy.dialects.mysql.TEXT.
__init__(length=None, **kw)¶ Construct a TEXT.
- Parameters:
length – Optional, if provided the server may optimize storage by substituting the smallest TEXT type sufficient to store
length
characters.charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
ascii – Defaults to False: short-hand for the
latin1
character set, generates ASCII in schema.unicode – Defaults to False: short-hand for the
ucs2
character set, generates UNICODE in schema.national – Optional. If true, use the server’s configured national character set.
binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
-
method
- class sqlalchemy.dialects.mysql.TIME(timezone=False, fsp=None)¶
MySQL TIME type.
Members
Class signature
class
sqlalchemy.dialects.mysql.TIME
(sqlalchemy.types.TIME
)-
method
sqlalchemy.dialects.mysql.TIME.
__init__(timezone=False, fsp=None)¶ Construct a MySQL TIME type.
- Parameters:
timezone – not used by the MySQL dialect.
fsp –
fractional seconds precision value. MySQL 5.6 supports storage of fractional seconds; this parameter will be used when emitting DDL for the TIME type.
Note
DBAPI driver support for fractional seconds may be limited; current support includes MySQL Connector/Python.
-
method
- class sqlalchemy.dialects.mysql.TIMESTAMP(timezone=False, fsp=None)¶
MySQL TIMESTAMP type.
Members
Class signature
class
sqlalchemy.dialects.mysql.TIMESTAMP
(sqlalchemy.types.TIMESTAMP
)-
method
sqlalchemy.dialects.mysql.TIMESTAMP.
__init__(timezone=False, fsp=None)¶ Construct a MySQL TIMESTAMP type.
- Parameters:
timezone – not used by the MySQL dialect.
fsp –
fractional seconds precision value. MySQL 5.6.4 supports storage of fractional seconds; this parameter will be used when emitting DDL for the TIMESTAMP type.
Note
DBAPI driver support for fractional seconds may be limited; current support includes MySQL Connector/Python.
-
method
- class sqlalchemy.dialects.mysql.TINYBLOB(length=None)¶
MySQL TINYBLOB type, for binary data up to 2^8 bytes.
Class signature
class
sqlalchemy.dialects.mysql.TINYBLOB
(sqlalchemy.types._Binary
)
- class sqlalchemy.dialects.mysql.TINYINT(display_width=None, **kw)¶
MySQL TINYINT type.
Members
Class signature
class
sqlalchemy.dialects.mysql.TINYINT
(sqlalchemy.dialects.mysql.types._IntegerType
)-
method
sqlalchemy.dialects.mysql.TINYINT.
__init__(display_width=None, **kw)¶ Construct a TINYINT.
- Parameters:
display_width – Optional, maximum display width for this number.
unsigned – a boolean, optional.
zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric.
-
method
- class sqlalchemy.dialects.mysql.TINYTEXT(**kwargs)¶
MySQL TINYTEXT type, for text up to 2^8 characters.
Members
Class signature
class
sqlalchemy.dialects.mysql.TINYTEXT
(sqlalchemy.dialects.mysql.types._StringType
)-
method
sqlalchemy.dialects.mysql.TINYTEXT.
__init__(**kwargs)¶ Construct a TINYTEXT.
- Parameters:
charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
ascii – Defaults to False: short-hand for the
latin1
character set, generates ASCII in schema.unicode – Defaults to False: short-hand for the
ucs2
character set, generates UNICODE in schema.national – Optional. If true, use the server’s configured national character set.
binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
-
method
- class sqlalchemy.dialects.mysql.VARBINARY(length=None)¶
The SQL VARBINARY type.
Class signature
class
sqlalchemy.dialects.mysql.VARBINARY
(sqlalchemy.types._Binary
)
- class sqlalchemy.dialects.mysql.VARCHAR(length=None, **kwargs)¶
MySQL VARCHAR type, for variable-length character data.
Members
Class signature
class
sqlalchemy.dialects.mysql.VARCHAR
(sqlalchemy.dialects.mysql.types._StringType
,sqlalchemy.types.VARCHAR
)-
method
sqlalchemy.dialects.mysql.VARCHAR.
__init__(length=None, **kwargs)¶ Construct a VARCHAR.
- Parameters:
charset – Optional, a column-level character set for this string value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.
collation – Optional, a column-level collation for this string value. Takes precedence to ‘binary’ short-hand.
ascii – Defaults to False: short-hand for the
latin1
character set, generates ASCII in schema.unicode – Defaults to False: short-hand for the
ucs2
character set, generates UNICODE in schema.national – Optional. If true, use the server’s configured national character set.
binary – Defaults to False: short-hand, pick the binary collation type that matches the column’s character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data.
-
method
- class sqlalchemy.dialects.mysql.YEAR(display_width=None)¶
MySQL YEAR type, for single byte storage of years 1901-2155.
Class signature
class
sqlalchemy.dialects.mysql.YEAR
(sqlalchemy.types.TypeEngine
)
MySQL DML Constructs¶
Object Name | Description |
---|---|
insert(table[, values, inline, bind, ...], **dialect_kw) |
Construct an |
MySQL-specific implementation of INSERT. |
- function sqlalchemy.dialects.mysql.insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)¶
Construct an
Insert
object.This documentation is inherited from
sqlalchemy.sql.expression.insert()
; this constructor,sqlalchemy.dialects.mysql.insert()
, creates asqlalchemy.dialects.mysql.Insert
object. See that class for additional details describing this subclass.Similar functionality is available via the
TableClause.insert()
method onTable
.- Parameters:
table –
TableClause
which is the subject of the insert.values – collection of values to be inserted; see
Insert.values()
for a description of allowed formats here. Can be omitted entirely; aInsert
construct will also dynamically render the VALUES clause at execution time based on the parameters passed toConnection.execute()
.inline – if True, no attempt will be made to retrieve the SQL-generated default values to be provided within the statement; in particular, this allows SQL expressions to be rendered ‘inline’ within the statement without the need to pre-execute them beforehand; for backends that support “returning”, this turns off the “implicit returning” feature for the statement.
If both values and compile-time bind parameters are present, the compile-time bind parameters override the information specified within values on a per-key basis.
The keys within values can be either
Column
objects or their string identifiers. Each key may reference one of:a literal data value (i.e. string, number, etc.);
a Column object;
a SELECT statement.
If a
SELECT
statement is specified which references thisINSERT
statement’s table, the statement will be correlated against theINSERT
statement.See also
Insert Expressions - SQL Expression Tutorial
Inserts, Updates and Deletes - SQL Expression Tutorial
- class sqlalchemy.dialects.mysql.Insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)¶
MySQL-specific implementation of INSERT.
Adds methods for MySQL-specific syntaxes such as ON DUPLICATE KEY UPDATE.
The
Insert
object is created using thesqlalchemy.dialects.mysql.insert()
function.New in version 1.2.
Members
Class signature
class
sqlalchemy.dialects.mysql.Insert
(sqlalchemy.sql.expression.Insert
)-
attribute
sqlalchemy.dialects.mysql.Insert.
inserted¶ Provide the “inserted” namespace for an ON DUPLICATE KEY UPDATE statement
MySQL’s ON DUPLICATE KEY UPDATE clause allows reference to the row that would be inserted, via a special function called
VALUES()
. This attribute provides all columns in this row to be referenceable such that they will render within aVALUES()
function inside the ON DUPLICATE KEY UPDATE clause. The attribute is named.inserted
so as not to conflict with the existingInsert.values()
method.See also
INSERT…ON DUPLICATE KEY UPDATE (Upsert) - example of how to use
Insert.inserted
-
method
sqlalchemy.dialects.mysql.Insert.
on_duplicate_key_update(*args, **kw)¶ Specifies the ON DUPLICATE KEY UPDATE clause.
- Parameters:
**kw – Column keys linked to UPDATE values. The values may be any SQL expression or supported literal Python values.
Warning
This dictionary does not take into account Python-specified default UPDATE values or generation functions, e.g. those specified using
Column.onupdate
. These values will not be exercised for an ON DUPLICATE KEY UPDATE style of UPDATE, unless values are manually specified here.- Parameters:
*args –
As an alternative to passing key/value parameters, a dictionary or list of 2-tuples can be passed as a single positional argument.
Passing a single dictionary is equivalent to the keyword argument form:
insert().on_duplicate_key_update({"name": "some name"})
Passing a list of 2-tuples indicates that the parameter assignments in the UPDATE clause should be ordered as sent, in a manner similar to that described for the
Update
construct overall in Parameter-Ordered Updates:insert().on_duplicate_key_update( [("name", "some name"), ("value", "some value")])
Changed in version 1.3: parameters can be specified as a dictionary or list of 2-tuples; the latter form provides for parameter ordering.
New in version 1.2.
-
attribute
mysqlclient (fork of MySQL-Python)¶
Support for the MySQL database via the mysqlclient (maintained fork of MySQL-Python) driver.
DBAPI¶
Documentation and download information (if applicable) for mysqlclient (maintained fork of MySQL-Python) is available at: https://pypi.org/project/mysqlclient/
Connecting¶
Connect String:
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
Driver Status¶
The mysqlclient DBAPI is a maintained fork of the MySQL-Python DBAPI that is no longer maintained. mysqlclient supports Python 2 and Python 3 and is very stable.
Unicode¶
Please see Unicode for current recommendations on unicode handling.
Using MySQLdb with Google Cloud SQL¶
Google Cloud SQL now recommends use of the MySQLdb dialect. Connect using a URL like the following:
mysql+mysqldb://root@/<dbname>?unix_socket=/cloudsql/<projectid>:<instancename>
Server Side Cursors¶
The mysqldb dialect supports server-side cursors. See Server Side Cursors.
PyMySQL¶
Support for the MySQL database via the PyMySQL driver.
DBAPI¶
Documentation and download information (if applicable) for PyMySQL is available at: https://pymysql.readthedocs.io/
Connecting¶
Connect String:
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
Unicode¶
Please see Unicode for current recommendations on unicode handling.
MySQL-Python Compatibility¶
The pymysql DBAPI is a pure Python port of the MySQL-python (MySQLdb) driver, and targets 100% compatibility. Most behavioral notes for MySQL-python apply to the pymysql driver as well.
MySQL-Connector¶
Support for the MySQL database via the MySQL Connector/Python driver.
DBAPI¶
Documentation and download information (if applicable) for MySQL Connector/Python is available at: https://pypi.org/project/mysql-connector-python/
Connecting¶
Connect String:
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
Note
The MySQL Connector/Python DBAPI has had many issues since its release, some of which may remain unresolved, and the mysqlconnector dialect is not tested as part of SQLAlchemy’s continuous integration. The recommended MySQL dialects are mysqlclient and PyMySQL.
cymysql¶
Support for the MySQL database via the CyMySQL driver.
DBAPI¶
Documentation and download information (if applicable) for CyMySQL is available at: https://github.com/nakagami/CyMySQL
Connecting¶
Connect String:
mysql+cymysql://<username>:<password>@<host>/<dbname>[?<options>]
Note
The CyMySQL dialect is not tested as part of SQLAlchemy’s continuous integration and may have unresolved issues. The recommended MySQL dialects are mysqlclient and PyMySQL.
OurSQL¶
Support for the MySQL database via the OurSQL driver.
DBAPI¶
Documentation and download information (if applicable) for OurSQL is available at: http://packages.python.org/oursql/
Connecting¶
Connect String:
mysql+oursql://<user>:<password>@<host>[:<port>]/<dbname>
Note
The OurSQL MySQL dialect is legacy and is no longer supported upstream, and is not tested as part of SQLAlchemy’s continuous integration. The recommended MySQL dialects are mysqlclient and PyMySQL.
Unicode¶
Please see Unicode for current recommendations on unicode handling.
Google App Engine¶
Support for the MySQL database via the Google Cloud SQL driver.
This dialect is based primarily on the mysqldb
dialect with
minimal changes.
Deprecated since version 1.0: This dialect is no longer necessary for Google Cloud SQL; the MySQLdb dialect can be used directly. Cloud SQL now recommends creating connections via the mysql dialect using the URL format
mysql+mysqldb://root@/<dbname>?unix_socket=/cloudsql/<projectid>:<instancename>
DBAPI¶
Documentation and download information (if applicable) for Google Cloud SQL is available at: https://developers.google.com/appengine/docs/python/cloud-sql/developers-guide
Connecting¶
Connect String:
mysql+gaerdbms:///<dbname>?instance=<instancename>
Pooling¶
Google App Engine connections appear to be randomly recycled,
so the dialect does not pool connections. The NullPool
implementation is installed within the Engine
by
default.
pyodbc¶
Support for the MySQL database via the PyODBC driver.
Note
The PyODBC for MySQL dialect is not well supported, and is subject to unresolved character encoding issues which exist within the current ODBC drivers available. (see http://code.google.com/p/pyodbc/issues/detail?id=25). Other dialects for MySQL are recommended.
DBAPI¶
Documentation and download information (if applicable) for PyODBC is available at: http://pypi.python.org/pypi/pyodbc/
Connecting¶
Connect String:
mysql+pyodbc://<username>:<password>@<dsnname>
Pass through exact pyodbc connection string:
import urllib
connection_string = (
'DRIVER=MySQL ODBC 8.0 ANSI Driver;'
'SERVER=localhost;'
'PORT=3307;'
'DATABASE=mydb;'
'UID=root;'
'PWD=(whatever);'
'charset=utf8mb4;'
)
params = urllib.parse.quote_plus(connection_string)
connection_uri = "mysql+pyodbc:///?odbc_connect=%s" % params
zxjdbc¶
Support for the MySQL database via the zxjdbc for Jython driver.
Note
Jython is not supported by current versions of SQLAlchemy. The zxjdbc dialect should be considered as experimental.
DBAPI¶
Drivers for this database are available at: http://dev.mysql.com/downloads/connector/j/
Connecting¶
Connect String:
mysql+zxjdbc://<user>:<password>@<hostname>[:<port>]/<database>
Character Sets¶
SQLAlchemy zxjdbc dialects pass unicode straight through to the
zxjdbc/JDBC layer. To allow multiple character sets to be sent from the
MySQL Connector/J JDBC driver, by default SQLAlchemy sets its
characterEncoding
connection property to UTF-8
. It may be
overridden via a create_engine
URL parameter.