PostgreSQL¶
Support for the PostgreSQL database.
The following table summarizes current support levels for database release versions.
DBAPI Support¶
The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.
Sequences/SERIAL/IDENTITY¶
PostgreSQL supports sequences, and SQLAlchemy uses these as the default means
of creating new primary key values for integer-based primary key columns. When
creating tables, SQLAlchemy will issue the SERIAL
datatype for
integer-based primary key columns, which generates a sequence and server side
default corresponding to the column.
To specify a specific named sequence to be used for primary key generation,
use the Sequence()
construct:
Table('sometable', metadata,
Column('id', Integer, Sequence('some_id_seq'), primary_key=True)
)
When SQLAlchemy issues a single INSERT statement, to fulfill the contract of
having the “last insert identifier” available, a RETURNING clause is added to
the INSERT statement which specifies the primary key columns should be
returned after the statement completes. The RETURNING functionality only takes
place if PostgreSQL 8.2 or later is in use. As a fallback approach, the
sequence, whether specified explicitly or implicitly via SERIAL
, is
executed independently beforehand, the returned value to be used in the
subsequent insert. Note that when an
insert()
construct is executed using
“executemany” semantics, the “last inserted identifier” functionality does not
apply; no RETURNING clause is emitted nor is the sequence pre-executed in this
case.
To force the usage of RETURNING by default off, specify the flag
implicit_returning=False
to create_engine()
.
PostgreSQL 10 IDENTITY columns¶
PostgreSQL 10 has a new IDENTITY feature that supersedes the use of SERIAL. Built-in support for rendering of IDENTITY is not available yet, however the following compilation hook may be used to replace occurrences of SERIAL with IDENTITY:
from sqlalchemy.schema import CreateColumn
from sqlalchemy.ext.compiler import compiles
@compiles(CreateColumn, 'postgresql')
def use_identity(element, compiler, **kw):
text = compiler.visit_create_column(element, **kw)
text = text.replace("SERIAL", "INT GENERATED BY DEFAULT AS IDENTITY")
return text
Using the above, a table such as:
t = Table(
't', m,
Column('id', Integer, primary_key=True),
Column('data', String)
)
Will generate on the backing database as:
CREATE TABLE t (
id INT GENERATED BY DEFAULT AS IDENTITY NOT NULL,
data VARCHAR,
PRIMARY KEY (id)
)
Transaction Isolation Level¶
Most SQLAlchemy dialects support setting of transaction isolation level
using the create_engine.execution_options
parameter
at the create_engine()
level, and at the Connection
level via the Connection.execution_options.isolation_level
parameter.
For PostgreSQL dialects, this feature works either by making use of the
DBAPI-specific features, such as psycopg2’s isolation level flags which will
embed the isolation level setting inline with the "BEGIN"
statement, or for
DBAPIs with no direct support by emitting SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL <level>
ahead of the "BEGIN"
statement
emitted by the DBAPI. For the special AUTOCOMMIT isolation level,
DBAPI-specific techniques are used which is typically an .autocommit
flag on the DBAPI connection object.
To set isolation level using create_engine()
:
engine = create_engine(
"postgresql+pg8000://scott:tiger@localhost/test",
execution_options={
"isolation_level": "REPEATABLE READ"
}
)
To set using per-connection execution options:
with engine.connect() as conn:
conn = conn.execution_options(
isolation_level="REPEATABLE READ"
)
with conn.begin():
# ... work with transaction
Valid values for isolation_level
on most PostgreSQL dialects include:
READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE
AUTOCOMMIT
Remote-Schema Table Introspection and PostgreSQL search_path¶
TL;DR;: keep the search_path
variable set to its default of public
,
name schemas other than public
explicitly within Table
definitions.
The PostgreSQL dialect can reflect tables from any schema. The
Table.schema
argument, or alternatively the
MetaData.reflect.schema
argument determines which schema will
be searched for the table or tables. The reflected Table
objects
will in all cases retain this .schema
attribute as was specified.
However, with regards to tables which these Table
objects refer to
via foreign key constraint, a decision must be made as to how the .schema
is represented in those remote tables, in the case where that remote
schema name is also a member of the current
PostgreSQL search path.
By default, the PostgreSQL dialect mimics the behavior encouraged by
PostgreSQL’s own pg_get_constraintdef()
builtin procedure. This function
returns a sample definition for a particular foreign key constraint,
omitting the referenced schema name from that definition when the name is
also in the PostgreSQL schema search path. The interaction below
illustrates this behavior:
test=> CREATE TABLE test_schema.referred(id INTEGER PRIMARY KEY);
CREATE TABLE
test=> CREATE TABLE referring(
test(> id INTEGER PRIMARY KEY,
test(> referred_id INTEGER REFERENCES test_schema.referred(id));
CREATE TABLE
test=> SET search_path TO public, test_schema;
test=> SELECT pg_catalog.pg_get_constraintdef(r.oid, true) FROM
test-> pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n
test-> ON n.oid = c.relnamespace
test-> JOIN pg_catalog.pg_constraint r ON c.oid = r.conrelid
test-> WHERE c.relname='referring' AND r.contype = 'f'
test-> ;
pg_get_constraintdef
---------------------------------------------------
FOREIGN KEY (referred_id) REFERENCES referred(id)
(1 row)
Above, we created a table referred
as a member of the remote schema
test_schema
, however when we added test_schema
to the
PG search_path
and then asked pg_get_constraintdef()
for the
FOREIGN KEY
syntax, test_schema
was not included in the output of
the function.
On the other hand, if we set the search path back to the typical default
of public
:
test=> SET search_path TO public;
SET
The same query against pg_get_constraintdef()
now returns the fully
schema-qualified name for us:
test=> SELECT pg_catalog.pg_get_constraintdef(r.oid, true) FROM
test-> pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n
test-> ON n.oid = c.relnamespace
test-> JOIN pg_catalog.pg_constraint r ON c.oid = r.conrelid
test-> WHERE c.relname='referring' AND r.contype = 'f';
pg_get_constraintdef
---------------------------------------------------------------
FOREIGN KEY (referred_id) REFERENCES test_schema.referred(id)
(1 row)
SQLAlchemy will by default use the return value of pg_get_constraintdef()
in order to determine the remote schema name. That is, if our search_path
were set to include test_schema
, and we invoked a table
reflection process as follows:
>>> from sqlalchemy import Table, MetaData, create_engine
>>> engine = create_engine("postgresql://scott:tiger@localhost/test")
>>> with engine.connect() as conn:
... conn.execute("SET search_path TO test_schema, public")
... meta = MetaData()
... referring = Table('referring', meta,
... autoload=True, autoload_with=conn)
...
<sqlalchemy.engine.result.ResultProxy object at 0x101612ed0>
The above process would deliver to the MetaData.tables
collection
referred
table named without the schema:
>>> meta.tables['referred'].schema is None
True
To alter the behavior of reflection such that the referred schema is
maintained regardless of the search_path
setting, use the
postgresql_ignore_search_path
option, which can be specified as a
dialect-specific argument to both Table
as well as
MetaData.reflect()
:
>>> with engine.connect() as conn:
... conn.execute("SET search_path TO test_schema, public")
... meta = MetaData()
... referring = Table('referring', meta, autoload=True,
... autoload_with=conn,
... postgresql_ignore_search_path=True)
...
<sqlalchemy.engine.result.ResultProxy object at 0x1016126d0>
We will now have test_schema.referred
stored as schema-qualified:
>>> meta.tables['test_schema.referred'].schema
'test_schema'
Note that in all cases, the “default” schema is always reflected as
None
. The “default” schema on PostgreSQL is that which is returned by the
PostgreSQL current_schema()
function. On a typical PostgreSQL
installation, this is the name public
. So a table that refers to another
which is in the public
(i.e. default) schema will always have the
.schema
attribute set to None
.
New in version 0.9.2: Added the postgresql_ignore_search_path
dialect-level option accepted by Table
and
MetaData.reflect()
.
See also
The Schema Search Path - on the PostgreSQL website.
INSERT/UPDATE…RETURNING¶
The dialect supports PG 8.2’s INSERT..RETURNING
, UPDATE..RETURNING
and
DELETE..RETURNING
syntaxes. INSERT..RETURNING
is used by default
for single-row INSERT statements in order to fetch newly generated
primary key identifiers. To specify an explicit RETURNING
clause,
use the _UpdateBase.returning()
method on a per-statement basis:
# INSERT..RETURNING
result = table.insert().returning(table.c.col1, table.c.col2).\
values(name='foo')
print(result.fetchall())
# UPDATE..RETURNING
result = table.update().returning(table.c.col1, table.c.col2).\
where(table.c.name=='foo').values(name='bar')
print(result.fetchall())
# DELETE..RETURNING
result = table.delete().returning(table.c.col1, table.c.col2).\
where(table.c.name=='foo')
print(result.fetchall())
INSERT…ON CONFLICT (Upsert)¶
Starting with version 9.5, PostgreSQL allows “upserts” (update or insert) of
rows into a table via the ON CONFLICT
clause of the INSERT
statement. A
candidate row will only be inserted if that row does not violate any unique
constraints. In the case of a unique constraint violation, a secondary action
can occur which can be either “DO UPDATE”, indicating that the data in the
target row should be updated, or “DO NOTHING”, which indicates to silently skip
this row.
Conflicts are determined using existing unique constraints and indexes. These constraints may be identified either using their name as stated in DDL, or they may be inferred by stating the columns and conditions that comprise the indexes.
SQLAlchemy provides ON CONFLICT
support via the PostgreSQL-specific
insert()
function, which provides
the generative methods Insert.on_conflict_do_update()
and Insert.on_conflict_do_nothing()
:
from sqlalchemy.dialects.postgresql import insert
insert_stmt = insert(my_table).values(
id='some_existing_id',
data='inserted value')
do_nothing_stmt = insert_stmt.on_conflict_do_nothing(
index_elements=['id']
)
conn.execute(do_nothing_stmt)
do_update_stmt = insert_stmt.on_conflict_do_update(
constraint='pk_my_table',
set_=dict(data='updated value')
)
conn.execute(do_update_stmt)
Both methods supply the “target” of the conflict using either the named constraint or by column inference:
The
Insert.on_conflict_do_update.index_elements
argument specifies a sequence containing string column names,Column
objects, and/or SQL expression elements, which would identify a unique index:do_update_stmt = insert_stmt.on_conflict_do_update( index_elements=['id'], set_=dict(data='updated value') ) do_update_stmt = insert_stmt.on_conflict_do_update( index_elements=[my_table.c.id], set_=dict(data='updated value') )
When using
Insert.on_conflict_do_update.index_elements
to infer an index, a partial index can be inferred by also specifying the use theInsert.on_conflict_do_update.index_where
parameter:from sqlalchemy.dialects.postgresql import insert stmt = insert(my_table).values(user_email='a@b.com', data='inserted data') stmt = stmt.on_conflict_do_update( index_elements=[my_table.c.user_email], index_where=my_table.c.user_email.like('%@gmail.com'), set_=dict(data=stmt.excluded.data) ) conn.execute(stmt)
The
Insert.on_conflict_do_update.constraint
argument is used to specify an index directly rather than inferring it. This can be the name of a UNIQUE constraint, a PRIMARY KEY constraint, or an INDEX:do_update_stmt = insert_stmt.on_conflict_do_update( constraint='my_table_idx_1', set_=dict(data='updated value') ) do_update_stmt = insert_stmt.on_conflict_do_update( constraint='my_table_pk', set_=dict(data='updated value') )
The
Insert.on_conflict_do_update.constraint
argument may also refer to a SQLAlchemy construct representing a constraint, e.g.UniqueConstraint
,PrimaryKeyConstraint
,Index
, orExcludeConstraint
. In this use, if the constraint has a name, it is used directly. Otherwise, if the constraint is unnamed, then inference will be used, where the expressions and optional WHERE clause of the constraint will be spelled out in the construct. This use is especially convenient to refer to the named or unnamed primary key of aTable
using theTable.primary_key
attribute:do_update_stmt = insert_stmt.on_conflict_do_update( constraint=my_table.primary_key, set_=dict(data='updated value') )
ON CONFLICT...DO UPDATE
is used to perform an update of the already
existing row, using any combination of new values as well as values
from the proposed insertion. These values are specified using the
Insert.on_conflict_do_update.set_
parameter. This
parameter accepts a dictionary which consists of direct values
for UPDATE:
from sqlalchemy.dialects.postgresql import insert
stmt = insert(my_table).values(id='some_id', data='inserted value')
do_update_stmt = stmt.on_conflict_do_update(
index_elements=['id'],
set_=dict(data='updated value')
)
conn.execute(do_update_stmt)
Warning
The Insert.on_conflict_do_update()
method does not take into
account Python-side default UPDATE values or generation functions, e.g.
those specified using Column.onupdate
.
These values will not be exercised for an ON CONFLICT style of UPDATE,
unless they are manually specified in the
Insert.on_conflict_do_update.set_
dictionary.
In order to refer to the proposed insertion row, the special alias
Insert.excluded
is available as an attribute on
the Insert
object; this object is a
ColumnCollection
which alias contains all columns of the target
table:
from sqlalchemy.dialects.postgresql import insert
stmt = insert(my_table).values(
id='some_id',
data='inserted value',
author='jlh')
do_update_stmt = stmt.on_conflict_do_update(
index_elements=['id'],
set_=dict(data='updated value', author=stmt.excluded.author)
)
conn.execute(do_update_stmt)
The Insert.on_conflict_do_update()
method also accepts
a WHERE clause using the Insert.on_conflict_do_update.where
parameter, which will limit those rows which receive an UPDATE:
from sqlalchemy.dialects.postgresql import insert
stmt = insert(my_table).values(
id='some_id',
data='inserted value',
author='jlh')
on_update_stmt = stmt.on_conflict_do_update(
index_elements=['id'],
set_=dict(data='updated value', author=stmt.excluded.author)
where=(my_table.c.status == 2)
)
conn.execute(on_update_stmt)
ON CONFLICT
may also be used to skip inserting a row entirely
if any conflict with a unique or exclusion constraint occurs; below
this is illustrated using the
Insert.on_conflict_do_nothing()
method:
from sqlalchemy.dialects.postgresql import insert
stmt = insert(my_table).values(id='some_id', data='inserted value')
stmt = stmt.on_conflict_do_nothing(index_elements=['id'])
conn.execute(stmt)
If DO NOTHING
is used without specifying any columns or constraint,
it has the effect of skipping the INSERT for any unique or exclusion
constraint violation which occurs:
from sqlalchemy.dialects.postgresql import insert
stmt = insert(my_table).values(id='some_id', data='inserted value')
stmt = stmt.on_conflict_do_nothing()
conn.execute(stmt)
New in version 1.1: Added support for PostgreSQL ON CONFLICT clauses
See also
INSERT .. ON CONFLICT - in the PostgreSQL documentation.
Full Text Search¶
SQLAlchemy makes available the PostgreSQL @@
operator via the
ColumnElement.match()
method on any textual column expression.
On a PostgreSQL dialect, an expression like the following:
select([sometable.c.text.match("search string")])
will emit to the database:
SELECT text @@ to_tsquery('search string') FROM table
The PostgreSQL text search functions such as to_tsquery()
and to_tsvector()
are available
explicitly using the standard func
construct. For example:
select([
func.to_tsvector('fat cats ate rats').match('cat & rat')
])
Emits the equivalent of:
SELECT to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat')
The TSVECTOR
type can provide for explicit CAST:
from sqlalchemy.dialects.postgresql import TSVECTOR
from sqlalchemy import select, cast
select([cast("some text", TSVECTOR)])
produces a statement equivalent to:
SELECT CAST('some text' AS TSVECTOR) AS anon_1
Full Text Searches in PostgreSQL are influenced by a combination of: the
PostgreSQL setting of default_text_search_config
, the regconfig
used
to build the GIN/GiST indexes, and the regconfig
optionally passed in
during a query.
When performing a Full Text Search against a column that has a GIN or
GiST index that is already pre-computed (which is common on full text
searches) one may need to explicitly pass in a particular PostgreSQL
regconfig
value to ensure the query-planner utilizes the index and does
not re-compute the column on demand.
In order to provide for this explicit query planning, or to use different
search strategies, the match
method accepts a postgresql_regconfig
keyword argument:
select([mytable.c.id]).where(
mytable.c.title.match('somestring', postgresql_regconfig='english')
)
Emits the equivalent of:
SELECT mytable.id FROM mytable
WHERE mytable.title @@ to_tsquery('english', 'somestring')
One can also specifically pass in a ‘regconfig’ value to the
to_tsvector()
command as the initial argument:
select([mytable.c.id]).where(
func.to_tsvector('english', mytable.c.title )\
.match('somestring', postgresql_regconfig='english')
)
produces a statement equivalent to:
SELECT mytable.id FROM mytable
WHERE to_tsvector('english', mytable.title) @@
to_tsquery('english', 'somestring')
It is recommended that you use the EXPLAIN ANALYZE...
tool from
PostgreSQL to ensure that you are generating queries with SQLAlchemy that
take full advantage of any indexes you may have created for full text search.
FROM ONLY …¶
The dialect supports PostgreSQL’s ONLY keyword for targeting only a particular
table in an inheritance hierarchy. This can be used to produce the
SELECT ... FROM ONLY
, UPDATE ONLY ...
, and DELETE FROM ONLY ...
syntaxes. It uses SQLAlchemy’s hints mechanism:
# SELECT ... FROM ONLY ...
result = table.select().with_hint(table, 'ONLY', 'postgresql')
print(result.fetchall())
# UPDATE ONLY ...
table.update(values=dict(foo='bar')).with_hint('ONLY',
dialect_name='postgresql')
# DELETE FROM ONLY ...
table.delete().with_hint('ONLY', dialect_name='postgresql')
PostgreSQL-Specific Index Options¶
Several extensions to the Index
construct are available, specific
to the PostgreSQL dialect.
Partial Indexes¶
Partial indexes add criterion to the index definition so that the index is
applied to a subset of rows. These can be specified on Index
using the postgresql_where
keyword argument:
Index('my_index', my_table.c.id, postgresql_where=my_table.c.value > 10)
Operator Classes¶
PostgreSQL allows the specification of an operator class for each column of
an index (see
http://www.postgresql.org/docs/8.3/interactive/indexes-opclass.html).
The Index
construct allows these to be specified via the
postgresql_ops
keyword argument:
Index(
'my_index', my_table.c.id, my_table.c.data,
postgresql_ops={
'data': 'text_pattern_ops',
'id': 'int4_ops'
})
Note that the keys in the postgresql_ops
dictionaries are the
“key” name of the Column
, i.e. the name used to access it from
the .c
collection of Table
, which can be configured to be
different than the actual name of the column as expressed in the database.
If postgresql_ops
is to be used against a complex SQL expression such
as a function call, then to apply to the column it must be given a label
that is identified in the dictionary by name, e.g.:
Index(
'my_index', my_table.c.id,
func.lower(my_table.c.data).label('data_lower'),
postgresql_ops={
'data_lower': 'text_pattern_ops',
'id': 'int4_ops'
})
Operator classes are also supported by the
ExcludeConstraint
construct using the
ExcludeConstraint.ops
parameter. See that parameter for
details.
New in version 1.3.21: added support for operator classes with
ExcludeConstraint
.
Index Types¶
PostgreSQL provides several index types: B-Tree, Hash, GiST, and GIN, as well
as the ability for users to create their own (see
http://www.postgresql.org/docs/8.3/static/indexes-types.html). These can be
specified on Index
using the postgresql_using
keyword argument:
Index('my_index', my_table.c.data, postgresql_using='gin')
The value passed to the keyword argument will be simply passed through to the underlying CREATE INDEX command, so it must be a valid index type for your version of PostgreSQL.
Index Storage Parameters¶
PostgreSQL allows storage parameters to be set on indexes. The storage
parameters available depend on the index method used by the index. Storage
parameters can be specified on Index
using the postgresql_with
keyword argument:
Index('my_index', my_table.c.data, postgresql_with={"fillfactor": 50})
New in version 1.0.6.
PostgreSQL allows to define the tablespace in which to create the index.
The tablespace can be specified on Index
using the
postgresql_tablespace
keyword argument:
Index('my_index', my_table.c.data, postgresql_tablespace='my_tablespace')
New in version 1.1.
Note that the same option is available on Table
as well.
Indexes with CONCURRENTLY¶
The PostgreSQL index option CONCURRENTLY is supported by passing the
flag postgresql_concurrently
to the Index
construct:
tbl = Table('testtbl', m, Column('data', Integer))
idx1 = Index('test_idx1', tbl.c.data, postgresql_concurrently=True)
The above index construct will render DDL for CREATE INDEX, assuming PostgreSQL 8.2 or higher is detected or for a connection-less dialect, as:
CREATE INDEX CONCURRENTLY test_idx1 ON testtbl (data)
For DROP INDEX, assuming PostgreSQL 9.2 or higher is detected or for a connection-less dialect, it will emit:
DROP INDEX CONCURRENTLY test_idx1
New in version 1.1: support for CONCURRENTLY on DROP INDEX. The CONCURRENTLY keyword is now only emitted if a high enough version of PostgreSQL is detected on the connection (or for a connection-less dialect).
When using CONCURRENTLY, the PostgreSQL database requires that the statement be invoked outside of a transaction block. The Python DBAPI enforces that even for a single statement, a transaction is present, so to use this construct, the DBAPI’s “autocommit” mode must be used:
metadata = MetaData()
table = Table(
"foo", metadata,
Column("id", String))
index = Index(
"foo_idx", table.c.id, postgresql_concurrently=True)
with engine.connect() as conn:
with conn.execution_options(isolation_level='AUTOCOMMIT'):
table.create(conn)
See also
PostgreSQL Index Reflection¶
The PostgreSQL database creates a UNIQUE INDEX implicitly whenever the
UNIQUE CONSTRAINT construct is used. When inspecting a table using
Inspector
, the Inspector.get_indexes()
and the Inspector.get_unique_constraints()
will report on these
two constructs distinctly; in the case of the index, the key
duplicates_constraint
will be present in the index entry if it is
detected as mirroring a constraint. When performing reflection using
Table(..., autoload=True)
, the UNIQUE INDEX is not returned
in Table.indexes
when it is detected as mirroring a
UniqueConstraint
in the Table.constraints
collection
.
Changed in version 1.0.0: - Table
reflection now includes
UniqueConstraint
objects present in the
Table.constraints
collection; the PostgreSQL backend will no longer include a “mirrored”
Index
construct in Table.indexes
if it is detected
as corresponding to a unique constraint.
Special Reflection Options¶
The Inspector
used for the PostgreSQL backend is an instance
of PGInspector
, which offers additional methods:
from sqlalchemy import create_engine, inspect
engine = create_engine("postgresql+psycopg2://localhost/test")
insp = inspect(engine) # will be a PGInspector
print(insp.get_enums())
Object Name | Description |
---|---|
- class sqlalchemy.dialects.postgresql.base.PGInspector(conn)¶
-
Class signature
class
sqlalchemy.dialects.postgresql.base.PGInspector
(sqlalchemy.engine.reflection.Inspector
)-
method
sqlalchemy.dialects.postgresql.base.PGInspector.
get_enums(schema=None)¶ Return a list of ENUM objects.
Each member is a dictionary containing these fields:
name - name of the enum
schema - the schema name for the enum.
visible - boolean, whether or not this enum is visible in the default search path.
labels - a list of string labels that apply to the enum.
- Parameters:
schema – schema name. If None, the default schema (typically ‘public’) is used. May also be set to ‘*’ to indicate load enums for all schemas.
New in version 1.0.0.
-
method
sqlalchemy.dialects.postgresql.base.PGInspector.
get_foreign_table_names(schema=None)¶ Return a list of FOREIGN TABLE names.
Behavior is similar to that of
Inspector.get_table_names()
, except that the list is limited to those tables that report arelkind
value off
.New in version 1.0.0.
-
method
sqlalchemy.dialects.postgresql.base.PGInspector.
get_table_oid(table_name, schema=None)¶ Return the OID for the given table name.
-
method
sqlalchemy.dialects.postgresql.base.PGInspector.
get_view_names(schema=None, include=('plain', 'materialized'))¶ Return all view names in schema.
- Parameters:
schema – Optional, retrieve names from a non-default schema. For special quoting, use
quoted_name
.include –
specify which types of views to return. Passed as a string value (for a single type) or a tuple (for any number of types). Defaults to
('plain', 'materialized')
.New in version 1.1.
-
method
PostgreSQL Table Options¶
Several options for CREATE TABLE are supported directly by the PostgreSQL
dialect in conjunction with the Table
construct:
TABLESPACE
:Table("some_table", metadata, ..., postgresql_tablespace='some_tablespace')
The above option is also available on the
Index
construct.ON COMMIT
:Table("some_table", metadata, ..., postgresql_on_commit='PRESERVE ROWS')
WITH OIDS
:Table("some_table", metadata, ..., postgresql_with_oids=True)
WITHOUT OIDS
:Table("some_table", metadata, ..., postgresql_with_oids=False)
INHERITS
:Table("some_table", metadata, ..., postgresql_inherits="some_supertable") Table("some_table", metadata, ..., postgresql_inherits=("t1", "t2", ...)) .. versionadded:: 1.0.0
PARTITION BY
:Table("some_table", metadata, ..., postgresql_partition_by='LIST (part_column)') .. versionadded:: 1.2.6
See also
Table values, Row and Tuple objects¶
Row Types¶
Built-in support for rendering a ROW
is not available yet, however the
tuple_()
may be used in its place. Another alternative is
to use the sqlalchemy.func
generator with func.ROW
table.select().where(
tuple_(table.c.id, table.c.fk) > (1,2)
).where(func.ROW(table.c.id, table.c.fk) < func.ROW(3, 7))
Will generate the row-wise comparison:
SELECT *
FROM table
WHERE (id, fk) > (1, 2)
AND ROW(id, fk) < ROW(3, 7)
Table Types¶
PostgreSQL also supports passing a table as an argument to a function. This
is not available yet in sqlalchemy, however the
literal_column()
function with the name of the table may be
used in its place:
select(['*']).select_from(func.my_function(literal_column('my_table')))
Will generate the SQL:
SELECT *
FROM my_function(my_table)
ARRAY Types¶
The PostgreSQL dialect supports arrays, both as multidimensional column types as well as array literals:
ARRAY
- ARRAY datatypearray
- array literalarray_agg()
- ARRAY_AGG SQL functionaggregate_order_by
- helper for PG’s ORDER BY aggregate function syntax.
JSON Types¶
The PostgreSQL dialect supports both JSON and JSONB datatypes, including psycopg2’s native support and support for all of PostgreSQL’s special operators:
HSTORE Type¶
The PostgreSQL HSTORE type as well as hstore literals are supported:
ENUM Types¶
PostgreSQL has an independently creatable TYPE structure which is used to implement an enumerated type. This approach introduces significant complexity on the SQLAlchemy side in terms of when this type should be CREATED and DROPPED. The type object is also an independently reflectable entity. The following sections should be consulted:
ENUM
- DDL and typing support for ENUM.PGInspector.get_enums()
- retrieve a listing of current ENUM typesENUM.create()
,ENUM.drop()
- individual CREATE and DROP commands for ENUM.
Using ENUM with ARRAY¶
The combination of ENUM and ARRAY is not directly supported by backend DBAPIs at this time. Prior to SQLAlchemy 1.3.17, a special workaround was needed in order to allow this combination to work, described below.
Changed in version 1.3.17: The combination of ENUM and ARRAY is now directly handled by SQLAlchemy’s implementation without any workarounds needed.
from sqlalchemy import TypeDecorator
from sqlalchemy.dialects.postgresql import ARRAY
class ArrayOfEnum(TypeDecorator):
impl = ARRAY
def bind_expression(self, bindvalue):
return sa.cast(bindvalue, self)
def result_processor(self, dialect, coltype):
super_rp = super(ArrayOfEnum, self).result_processor(
dialect, coltype)
def handle_raw_string(value):
inner = re.match(r"^{(.*)}$", value).group(1)
return inner.split(",") if inner else []
def process(value):
if value is None:
return None
return super_rp(handle_raw_string(value))
return process
E.g.:
Table(
'mydata', metadata,
Column('id', Integer, primary_key=True),
Column('data', ArrayOfEnum(ENUM('a', 'b, 'c', name='myenum')))
)
This type is not included as a built-in type as it would be incompatible with a DBAPI that suddenly decides to support ARRAY of ENUM directly in a new version.
Using JSON/JSONB with ARRAY¶
Similar to using ENUM, prior to SQLAlchemy 1.3.17, for an ARRAY of JSON/JSONB we need to render the appropriate CAST. Current psycopg2 drivers accomodate the result set correctly without any special steps.
Changed in version 1.3.17: The combination of JSON/JSONB and ARRAY is now directly handled by SQLAlchemy’s implementation without any workarounds needed.
class CastingArray(ARRAY):
def bind_expression(self, bindvalue):
return sa.cast(bindvalue, self)
E.g.:
Table(
'mydata', metadata,
Column('id', Integer, primary_key=True),
Column('data', CastingArray(JSONB))
)
PostgreSQL Data Types¶
As with all SQLAlchemy dialects, all UPPERCASE types that are known to be
valid with PostgreSQL are importable from the top level dialect, whether
they originate from sqlalchemy.types
or from the local dialect:
from sqlalchemy.dialects.postgresql import \
ARRAY, BIGINT, BIT, BOOLEAN, BYTEA, CHAR, CIDR, DATE, \
DOUBLE_PRECISION, ENUM, FLOAT, HSTORE, INET, INTEGER, \
INTERVAL, JSON, JSONB, MACADDR, MONEY, NUMERIC, OID, REAL, SMALLINT, TEXT, \
TIME, TIMESTAMP, UUID, VARCHAR, INT4RANGE, INT8RANGE, NUMRANGE, \
DATERANGE, TSRANGE, TSTZRANGE, TSVECTOR
Types which are specific to PostgreSQL, or have PostgreSQL-specific construction arguments, are as follows:
Object Name | Description |
---|---|
Represent a PostgreSQL aggregate order by expression. |
|
All(other, arrexpr[, operator]) |
A synonym for the |
Any(other, arrexpr[, operator]) |
A synonym for the |
A PostgreSQL ARRAY literal. |
|
PostgreSQL ARRAY type. |
|
array_agg(*arg, **kw) |
PostgreSQL-specific form of |
PostgreSQL ENUM type. |
|
Represent the PostgreSQL HSTORE type. |
|
Construct an hstore value within a SQL expression using the
PostgreSQL |
|
PostgreSQL INTERVAL type. |
|
Represent the PostgreSQL JSON type. |
|
Represent the PostgreSQL JSONB type. |
|
Provide the PostgreSQL MONEY type. |
|
Provide the PostgreSQL OID type. |
|
The SQL REAL type. |
|
Provide the PostgreSQL REGCLASS type. |
|
The |
|
PostgreSQL UUID type. |
- class sqlalchemy.dialects.postgresql.aggregate_order_by(target, *order_by)¶
Represent a PostgreSQL aggregate order by expression.
E.g.:
from sqlalchemy.dialects.postgresql import aggregate_order_by expr = func.array_agg(aggregate_order_by(table.c.a, table.c.b.desc())) stmt = select([expr])
would represent the expression:
SELECT array_agg(a ORDER BY b DESC) FROM table;
Similarly:
expr = func.string_agg( table.c.a, aggregate_order_by(literal_column("','"), table.c.a) ) stmt = select([expr])
Would represent:
SELECT string_agg(a, ',' ORDER BY a) FROM table;
New in version 1.1.
Changed in version 1.2.13: - the ORDER BY argument may be multiple terms
See also
Class signature
class
sqlalchemy.dialects.postgresql.aggregate_order_by
(sqlalchemy.sql.expression.ColumnElement
)
- class sqlalchemy.dialects.postgresql.array(clauses, **kw)¶
A PostgreSQL ARRAY literal.
This is used to produce ARRAY literals in SQL expressions, e.g.:
from sqlalchemy.dialects.postgresql import array from sqlalchemy.dialects import postgresql from sqlalchemy import select, func stmt = select([ array([1,2]) + array([3,4,5]) ]) print(stmt.compile(dialect=postgresql.dialect()))
Produces the SQL:
SELECT ARRAY[%(param_1)s, %(param_2)s] || ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1
An instance of
array
will always have the datatypeARRAY
. The “inner” type of the array is inferred from the values present, unless thetype_
keyword argument is passed:array(['foo', 'bar'], type_=CHAR)
Multidimensional arrays are produced by nesting
array
constructs. The dimensionality of the finalARRAY
type is calculated by recursively adding the dimensions of the innerARRAY
type:stmt = select([ array([ array([1, 2]), array([3, 4]), array([column('q'), column('x')]) ]) ]) print(stmt.compile(dialect=postgresql.dialect()))
Produces:
SELECT ARRAY[ARRAY[%(param_1)s, %(param_2)s], ARRAY[%(param_3)s, %(param_4)s], ARRAY[q, x]] AS anon_1
New in version 1.3.6: added support for multidimensional array literals
See also
Class signature
class
sqlalchemy.dialects.postgresql.array
(sqlalchemy.sql.expression.Tuple
)
- class sqlalchemy.dialects.postgresql.ARRAY(item_type, as_tuple=False, dimensions=None, zero_indexes=False)¶
PostgreSQL ARRAY type.
The
ARRAY
type is constructed in the same way as the coreARRAY
type; a member type is required, and a number of dimensions is recommended if the type is to be used for more than one dimension:from sqlalchemy.dialects import postgresql mytable = Table("mytable", metadata, Column("data", postgresql.ARRAY(Integer, dimensions=2)) )
The
ARRAY
type provides all operations defined on the coreARRAY
type, including support for “dimensions”, indexed access, and simple matching such asComparator.any()
andComparator.all()
.ARRAY
class also provides PostgreSQL-specific methods for containment operations, includingComparator.contains()
Comparator.contained_by()
, andComparator.overlap()
, e.g.:mytable.c.data.contains([1, 2])
The
ARRAY
type may not be supported on all PostgreSQL DBAPIs; it is currently known to work on psycopg2 only.Additionally, the
ARRAY
type does not work directly in conjunction with theENUM
type. For a workaround, see the special type at Using ENUM with ARRAY.Members
Class signature
class
sqlalchemy.dialects.postgresql.ARRAY
(sqlalchemy.types.ARRAY
)- class Comparator(expr)¶
Define comparison operations for
ARRAY
.Note that these operations are in addition to those provided by the base
Comparator
class, includingComparator.any()
andComparator.all()
.Class signature
class
sqlalchemy.dialects.postgresql.ARRAY.Comparator
(sqlalchemy.types.Comparator
)-
method
sqlalchemy.dialects.postgresql.ARRAY.Comparator.
contained_by(other)¶ Boolean expression. Test if elements are a proper subset of the elements of the argument array expression.
-
method
sqlalchemy.dialects.postgresql.ARRAY.Comparator.
contains(other, **kwargs)¶ Boolean expression. Test if elements are a superset of the elements of the argument array expression.
-
method
sqlalchemy.dialects.postgresql.ARRAY.Comparator.
overlap(other)¶ Boolean expression. Test if array has elements in common with an argument array expression.
-
method
-
method
sqlalchemy.dialects.postgresql.ARRAY.
__init__(item_type, as_tuple=False, dimensions=None, zero_indexes=False)¶ Construct an ARRAY.
E.g.:
Column('myarray', ARRAY(Integer))
Arguments are:
- Parameters:
item_type – The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like
INTEGER[][]
, are constructed asARRAY(Integer)
, not asARRAY(ARRAY(Integer))
or such.as_tuple=False – Specify whether return results should be converted to tuples from lists. DBAPIs such as psycopg2 return lists by default. When tuples are returned, the results are hashable.
dimensions – if non-None, the ARRAY will assume a fixed number of dimensions. This will cause the DDL emitted for this ARRAY to include the exact number of bracket clauses
[]
, and will also optimize the performance of the type overall. Note that PG arrays are always implicitly “non-dimensioned”, meaning they can store any number of dimensions no matter how they were declared.zero_indexes=False –
when True, index values will be converted between Python zero-based and PostgreSQL one-based indexes, e.g. a value of one will be added to all index values before passing to the database.
New in version 0.9.5.
- function sqlalchemy.dialects.postgresql.array_agg(*arg, **kw)¶
PostgreSQL-specific form of
array_agg
, ensures return type isARRAY
and not the plainARRAY
, unless an explicittype_
is passed.New in version 1.1.
- function sqlalchemy.dialects.postgresql.Any(other, arrexpr, operator=<built-in function eq>)¶
A synonym for the
Comparator.any()
method.This method is legacy and is here for backwards-compatibility.
See also
- function sqlalchemy.dialects.postgresql.All(other, arrexpr, operator=<built-in function eq>)¶
A synonym for the
Comparator.all()
method.This method is legacy and is here for backwards-compatibility.
See also
- class sqlalchemy.dialects.postgresql.BIT(length=None, varying=False)¶
Class signature
class
sqlalchemy.dialects.postgresql.BIT
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.BYTEA(length=None)¶
Members
Class signature
class
sqlalchemy.dialects.postgresql.BYTEA
(sqlalchemy.types.LargeBinary
)-
method
sqlalchemy.dialects.postgresql.BYTEA.
__init__(length=None)¶ inherited from the
sqlalchemy.types.LargeBinary.__init__
method ofLargeBinary
Construct a LargeBinary type.
- Parameters:
length – optional, a length for the column for use in DDL statements, for those binary types that accept a length, such as the MySQL BLOB type.
-
method
- class sqlalchemy.dialects.postgresql.CIDR¶
Class signature
class
sqlalchemy.dialects.postgresql.CIDR
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.DOUBLE_PRECISION(precision=None, asdecimal=False, decimal_return_scale=None)¶
Members
Class signature
class
sqlalchemy.dialects.postgresql.DOUBLE_PRECISION
(sqlalchemy.types.Float
)-
method
sqlalchemy.dialects.postgresql.DOUBLE_PRECISION.
__init__(precision=None, asdecimal=False, decimal_return_scale=None)¶ inherited from the
sqlalchemy.types.Float.__init__
method ofFloat
Construct a Float.
- Parameters:
precision – the numeric precision for use in DDL
CREATE TABLE
.asdecimal – the same flag as that of
Numeric
, but defaults toFalse
. Note that setting this flag toTrue
results in floating point conversion.decimal_return_scale –
Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don’t have a notion of “scale”, so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Note that the MySQL float types, which do include “scale”, will use “scale” as the default for decimal_return_scale, if not otherwise specified.
New in version 0.9.0.
-
method
- class sqlalchemy.dialects.postgresql.ENUM(*enums, **kw)¶
PostgreSQL ENUM type.
This is a subclass of
Enum
which includes support for PG’sCREATE TYPE
andDROP TYPE
.When the builtin type
Enum
is used and theEnum.native_enum
flag is left at its default of True, the PostgreSQL backend will use aENUM
type as the implementation, so the special create/drop rules will be used.The create/drop behavior of ENUM is necessarily intricate, due to the awkward relationship the ENUM type has in relationship to the parent table, in that it may be “owned” by just a single table, or may be shared among many tables.
When using
Enum
orENUM
in an “inline” fashion, theCREATE TYPE
andDROP TYPE
is emitted corresponding to when theTable.create()
andTable.drop()
methods are called:table = Table('sometable', metadata, Column('some_enum', ENUM('a', 'b', 'c', name='myenum')) ) table.create(engine) # will emit CREATE ENUM and CREATE TABLE table.drop(engine) # will emit DROP TABLE and DROP ENUM
To use a common enumerated type between multiple tables, the best practice is to declare the
Enum
orENUM
independently, and associate it with theMetaData
object itself:my_enum = ENUM('a', 'b', 'c', name='myenum', metadata=metadata) t1 = Table('sometable_one', metadata, Column('some_enum', myenum) ) t2 = Table('sometable_two', metadata, Column('some_enum', myenum) )
When this pattern is used, care must still be taken at the level of individual table creates. Emitting CREATE TABLE without also specifying
checkfirst=True
will still cause issues:t1.create(engine) # will fail: no such type 'myenum'
If we specify
checkfirst=True
, the individual table-level create operation will check for theENUM
and create if not exists:# will check if enum exists, and emit CREATE TYPE if not t1.create(engine, checkfirst=True)
When using a metadata-level ENUM type, the type will always be created and dropped if either the metadata-wide create/drop is called:
metadata.create_all(engine) # will emit CREATE TYPE metadata.drop_all(engine) # will emit DROP TYPE
The type can also be created and dropped directly:
my_enum.create(engine) my_enum.drop(engine)
Changed in version 1.0.0: The PostgreSQL
ENUM
type now behaves more strictly with regards to CREATE/DROP. A metadata-level ENUM type will only be created and dropped at the metadata level, not the table level, with the exception oftable.create(checkfirst=True)
. Thetable.drop()
call will now emit a DROP TYPE for a table-level enumerated type.Members
Class signature
class
sqlalchemy.dialects.postgresql.ENUM
(sqlalchemy.types.NativeForEmulated
,sqlalchemy.types.Enum
)-
method
sqlalchemy.dialects.postgresql.ENUM.
__init__(*enums, **kw)¶ Construct an
ENUM
.Arguments are the same as that of
Enum
, but also including the following parameters.- Parameters:
create_type – Defaults to True. Indicates that
CREATE TYPE
should be emitted, after optionally checking for the presence of the type, when the parent table is being created; and additionally thatDROP TYPE
is called when the table is dropped. WhenFalse
, no check will be performed and noCREATE TYPE
orDROP TYPE
is emitted, unlessENUM.create()
orENUM.drop()
are called directly. Setting toFalse
is helpful when invoking a creation scheme to a SQL file without access to the actual database - theENUM.create()
andENUM.drop()
methods can be used to emit SQL to a target bind.
-
method
sqlalchemy.dialects.postgresql.ENUM.
create(bind=None, checkfirst=True)¶ Emit
CREATE TYPE
for thisENUM
.If the underlying dialect does not support PostgreSQL CREATE TYPE, no action is taken.
- Parameters:
bind – a connectable
Engine
,Connection
, or similar object to emit SQL.checkfirst – if
True
, a query against the PG catalog will be first performed to see if the type does not exist already before creating.
-
method
sqlalchemy.dialects.postgresql.ENUM.
drop(bind=None, checkfirst=True)¶ Emit
DROP TYPE
for thisENUM
.If the underlying dialect does not support PostgreSQL DROP TYPE, no action is taken.
- Parameters:
bind – a connectable
Engine
,Connection
, or similar object to emit SQL.checkfirst – if
True
, a query against the PG catalog will be first performed to see if the type actually exists before dropping.
-
method
- class sqlalchemy.dialects.postgresql.HSTORE(text_type=None)¶
Represent the PostgreSQL HSTORE type.
The
HSTORE
type stores dictionaries containing strings, e.g.:data_table = Table('data_table', metadata, Column('id', Integer, primary_key=True), Column('data', HSTORE) ) with engine.connect() as conn: conn.execute( data_table.insert(), data = {"key1": "value1", "key2": "value2"} )
HSTORE
provides for a wide range of operations, including:Index operations:
data_table.c.data['some key'] == 'some value'
Containment operations:
data_table.c.data.has_key('some key') data_table.c.data.has_all(['one', 'two', 'three'])
Concatenation:
data_table.c.data + {"k1": "v1"}
For a full list of special methods see
comparator_factory
.For usage with the SQLAlchemy ORM, it may be desirable to combine the usage of
HSTORE
withMutableDict
dictionary now part of thesqlalchemy.ext.mutable
extension. This extension will allow “in-place” changes to the dictionary, e.g. addition of new keys or replacement/removal of existing keys to/from the current dictionary, to produce events which will be detected by the unit of work:from sqlalchemy.ext.mutable import MutableDict class MyClass(Base): __tablename__ = 'data_table' id = Column(Integer, primary_key=True) data = Column(MutableDict.as_mutable(HSTORE)) my_object = session.query(MyClass).one() # in-place mutation, requires Mutable extension # in order for the ORM to detect my_object.data['some_key'] = 'some value' session.commit()
When the
sqlalchemy.ext.mutable
extension is not used, the ORM will not be alerted to any changes to the contents of an existing dictionary, unless that dictionary value is re-assigned to the HSTORE-attribute itself, thus generating a change event.See also
hstore
- render the PostgreSQLhstore()
function.Members
array(), contained_by(), contains(), defined(), delete(), has_all(), has_any(), has_key(), keys(), matrix(), slice(), vals(), __init__(), bind_processor(), comparator_factory, hashable, result_processor()
Class signature
class
sqlalchemy.dialects.postgresql.HSTORE
(sqlalchemy.types.Indexable
,sqlalchemy.types.Concatenable
,sqlalchemy.types.TypeEngine
)- class Comparator(expr)¶
Define comparison operations for
HSTORE
.Class signature
class
sqlalchemy.dialects.postgresql.HSTORE.Comparator
(sqlalchemy.types.Comparator
,sqlalchemy.types.Comparator
)-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
array()¶ Text array expression. Returns array of alternating keys and values.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
contained_by(other)¶ Boolean expression. Test if keys are a proper subset of the keys of the argument jsonb expression.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
contains(other, **kwargs)¶ Boolean expression. Test if keys (or array) are a superset of/contained the keys of the argument jsonb expression.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
defined(key)¶ Boolean expression. Test for presence of a non-NULL value for the key. Note that the key may be a SQLA expression.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
delete(key)¶ HStore expression. Returns the contents of this hstore with the given key deleted. Note that the key may be a SQLA expression.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
has_all(other)¶ Boolean expression. Test for presence of all keys in jsonb
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
has_any(other)¶ Boolean expression. Test for presence of any key in jsonb
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
has_key(other)¶ Boolean expression. Test for presence of a key. Note that the key may be a SQLA expression.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
keys()¶ Text array expression. Returns array of keys.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
matrix()¶ Text array expression. Returns array of [key, value] pairs.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
slice(array)¶ HStore expression. Returns a subset of an hstore defined by array of keys.
-
method
sqlalchemy.dialects.postgresql.HSTORE.Comparator.
vals()¶ Text array expression. Returns array of values.
-
method
-
method
sqlalchemy.dialects.postgresql.HSTORE.
__init__(text_type=None)¶ Construct a new
HSTORE
.- Parameters:
text_type –
the type that should be used for indexed values. Defaults to
Text
.New in version 1.1.0.
-
method
sqlalchemy.dialects.postgresql.HSTORE.
bind_processor(dialect)¶ Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.- Parameters:
dialect – Dialect instance in use.
-
attribute
sqlalchemy.dialects.postgresql.HSTORE.
comparator_factory¶ alias of
Comparator
-
attribute
sqlalchemy.dialects.postgresql.HSTORE.
hashable = False¶ Flag, if False, means values from this type aren’t hashable.
Used by the ORM when uniquing result lists.
-
method
sqlalchemy.dialects.postgresql.HSTORE.
result_processor(dialect, coltype)¶ Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.- Parameters:
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
- class sqlalchemy.dialects.postgresql.hstore(*args, **kwargs)¶
Construct an hstore value within a SQL expression using the PostgreSQL
hstore()
function.The
hstore
function accepts one or two arguments as described in the PostgreSQL documentation.E.g.:
from sqlalchemy.dialects.postgresql import array, hstore select([hstore('key1', 'value1')]) select([ hstore( array(['key1', 'key2', 'key3']), array(['value1', 'value2', 'value3']) ) ])
See also
HSTORE
- the PostgreSQLHSTORE
datatype.Members
Class signature
class
sqlalchemy.dialects.postgresql.hstore
(sqlalchemy.sql.functions.GenericFunction
)-
attribute
sqlalchemy.dialects.postgresql.hstore.
type¶ alias of
HSTORE
-
attribute
- class sqlalchemy.dialects.postgresql.INET¶
Class signature
class
sqlalchemy.dialects.postgresql.INET
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.INTERVAL(precision=None, fields=None)¶
PostgreSQL INTERVAL type.
The INTERVAL type may not be supported on all DBAPIs. It is known to work on psycopg2 and not pg8000 or zxjdbc.
Members
Class signature
class
sqlalchemy.dialects.postgresql.INTERVAL
(sqlalchemy.types.NativeForEmulated
,sqlalchemy.types._AbstractInterval
)-
method
sqlalchemy.dialects.postgresql.INTERVAL.
__init__(precision=None, fields=None)¶ Construct an INTERVAL.
- Parameters:
precision – optional integer precision value
fields –
string fields specifier. allows storage of fields to be limited, such as
"YEAR"
,"MONTH"
,"DAY TO HOUR"
, etc.New in version 1.2.
-
method
- class sqlalchemy.dialects.postgresql.JSON(none_as_null=False, astext_type=None)¶
Represent the PostgreSQL JSON type.
This type is a specialization of the Core-level
JSON
type. Be sure to read the documentation forJSON
for important tips regarding treatment of NULL values and ORM use.The operators provided by the PostgreSQL version of
JSON
include:Index operations (the
->
operator):data_table.c.data['some key'] data_table.c.data[5]
Index operations returning text (the
->>
operator):data_table.c.data['some key'].astext == 'some value'
Note that equivalent functionality is available via the
Comparator.as_string
accessor.Index operations with CAST (equivalent to
CAST(col ->> ['some key'] AS <type>)
):data_table.c.data['some key'].astext.cast(Integer) == 5
Note that equivalent functionality is available via the
Comparator.as_integer
and similar accessors.Path index operations (the
#>
operator):data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')]
Path index operations returning text (the
#>>
operator):data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')].astext == 'some value'
Changed in version 1.1: The
ColumnElement.cast()
operator on JSON objects now requires that theComparator.astext
modifier be called explicitly, if the cast works only from a textual string.Index operations return an expression object whose type defaults to
JSON
by default, so that further JSON-oriented instructions may be called upon the result type.Custom serializers and deserializers are specified at the dialect level, that is using
create_engine()
. The reason for this is that when using psycopg2, the DBAPI only allows serializers at the per-cursor or per-connection level. E.g.:engine = create_engine("postgresql://scott:tiger@localhost/test", json_serializer=my_serialize_fn, json_deserializer=my_deserialize_fn )
When using the psycopg2 dialect, the json_deserializer is registered against the database using
psycopg2.extras.register_default_json
.Members
Class signature
class
sqlalchemy.dialects.postgresql.JSON
(sqlalchemy.types.JSON
)- class Comparator(expr)¶
Define comparison operations for
JSON
.Class signature
class
sqlalchemy.dialects.postgresql.JSON.Comparator
(sqlalchemy.types.Comparator
)-
attribute
sqlalchemy.dialects.postgresql.JSON.Comparator.
astext¶ On an indexed expression, use the “astext” (e.g. “->>”) conversion when rendered in SQL.
E.g.:
select([data_table.c.data['some key'].astext])
See also
-
attribute
-
method
sqlalchemy.dialects.postgresql.JSON.
__init__(none_as_null=False, astext_type=None)¶ Construct a
JSON
type.- Parameters:
none_as_null –
if True, persist the value
None
as a SQL NULL value, not the JSON encoding ofnull
. Note that when this flag is False, thenull()
construct can still be used to persist a NULL value:from sqlalchemy import null conn.execute(table.insert(), data=null())
Changed in version 0.9.8: - Added
none_as_null
, andnull()
is now supported in order to persist a NULL value.See also
astext_type –
the type to use for the
Comparator.astext
accessor on indexed attributes. Defaults toText
.New in version 1.1.
-
attribute
sqlalchemy.dialects.postgresql.JSON.
comparator_factory¶ alias of
Comparator
- class sqlalchemy.dialects.postgresql.JSONB(none_as_null=False, astext_type=None)¶
Represent the PostgreSQL JSONB type.
The
JSONB
type stores arbitrary JSONB format data, e.g.:data_table = Table('data_table', metadata, Column('id', Integer, primary_key=True), Column('data', JSONB) ) with engine.connect() as conn: conn.execute( data_table.insert(), data = {"key1": "value1", "key2": "value2"} )
The
JSONB
type includes all operations provided byJSON
, including the same behaviors for indexing operations. It also adds additional operators specific to JSONB, includingComparator.has_key()
,Comparator.has_all()
,Comparator.has_any()
,Comparator.contains()
, andComparator.contained_by()
.Like the
JSON
type, theJSONB
type does not detect in-place changes when used with the ORM, unless thesqlalchemy.ext.mutable
extension is used.Custom serializers and deserializers are shared with the
JSON
class, using thejson_serializer
andjson_deserializer
keyword arguments. These must be specified at the dialect level usingcreate_engine()
. When using psycopg2, the serializers are associated with the jsonb type usingpsycopg2.extras.register_default_jsonb
on a per-connection basis, in the same way thatpsycopg2.extras.register_default_json
is used to register these handlers with the json type.New in version 0.9.7.
See also
Members
contained_by(), contains(), has_all(), has_any(), has_key(), comparator_factory
Class signature
class
sqlalchemy.dialects.postgresql.JSONB
(sqlalchemy.dialects.postgresql.json.JSON
)- class Comparator(expr)¶
Define comparison operations for
JSON
.Class signature
class
sqlalchemy.dialects.postgresql.JSONB.Comparator
(sqlalchemy.dialects.postgresql.json.Comparator
)-
method
sqlalchemy.dialects.postgresql.JSONB.Comparator.
contained_by(other)¶ Boolean expression. Test if keys are a proper subset of the keys of the argument jsonb expression.
-
method
sqlalchemy.dialects.postgresql.JSONB.Comparator.
contains(other, **kwargs)¶ Boolean expression. Test if keys (or array) are a superset of/contained the keys of the argument jsonb expression.
-
method
sqlalchemy.dialects.postgresql.JSONB.Comparator.
has_all(other)¶ Boolean expression. Test for presence of all keys in jsonb
-
method
sqlalchemy.dialects.postgresql.JSONB.Comparator.
has_any(other)¶ Boolean expression. Test for presence of any key in jsonb
-
method
sqlalchemy.dialects.postgresql.JSONB.Comparator.
has_key(other)¶ Boolean expression. Test for presence of a key. Note that the key may be a SQLA expression.
-
method
-
attribute
sqlalchemy.dialects.postgresql.JSONB.
comparator_factory¶ alias of
Comparator
- class sqlalchemy.dialects.postgresql.MACADDR¶
Class signature
class
sqlalchemy.dialects.postgresql.MACADDR
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.MONEY¶
Provide the PostgreSQL MONEY type.
Depending on driver, result rows using this type may return a string value which includes currency symbols.
For this reason, it may be preferable to provide conversion to a numerically-based currency datatype using
TypeDecorator
:import re import decimal from sqlalchemy import TypeDecorator class NumericMoney(TypeDecorator): impl = MONEY def process_result_value(self, value: Any, dialect: Any) -> None: if value is not None: # adjust this for the currency and numeric m = re.match(r"\$([\d.]+)", value) if m: value = decimal.Decimal(m.group(1)) return value
Alternatively, the conversion may be applied as a CAST using the
TypeDecorator.column_expression()
method as follows:import decimal from sqlalchemy import cast from sqlalchemy import TypeDecorator class NumericMoney(TypeDecorator): impl = MONEY def column_expression(self, column: Any): return cast(column, Numeric())
New in version 1.2.
Class signature
class
sqlalchemy.dialects.postgresql.MONEY
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.OID¶
Provide the PostgreSQL OID type.
New in version 0.9.5.
Class signature
class
sqlalchemy.dialects.postgresql.OID
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.REAL(precision=None, asdecimal=False, decimal_return_scale=None)¶
The SQL REAL type.
Members
Class signature
class
sqlalchemy.dialects.postgresql.REAL
(sqlalchemy.types.Float
)-
method
sqlalchemy.dialects.postgresql.REAL.
__init__(precision=None, asdecimal=False, decimal_return_scale=None)¶ inherited from the
sqlalchemy.types.Float.__init__
method ofFloat
Construct a Float.
- Parameters:
precision – the numeric precision for use in DDL
CREATE TABLE
.asdecimal – the same flag as that of
Numeric
, but defaults toFalse
. Note that setting this flag toTrue
results in floating point conversion.decimal_return_scale –
Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don’t have a notion of “scale”, so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Note that the MySQL float types, which do include “scale”, will use “scale” as the default for decimal_return_scale, if not otherwise specified.
New in version 0.9.0.
-
method
- class sqlalchemy.dialects.postgresql.REGCLASS¶
Provide the PostgreSQL REGCLASS type.
New in version 1.2.7.
Class signature
class
sqlalchemy.dialects.postgresql.REGCLASS
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.TSVECTOR¶
The
TSVECTOR
type implements the PostgreSQL text search type TSVECTOR.It can be used to do full text queries on natural language documents.
New in version 0.9.0.
See also
Class signature
class
sqlalchemy.dialects.postgresql.TSVECTOR
(sqlalchemy.types.TypeEngine
)
- class sqlalchemy.dialects.postgresql.UUID(as_uuid=False)¶
PostgreSQL UUID type.
Represents the UUID column type, interpreting data either as natively returned by the DBAPI or as Python uuid objects.
The UUID type may not be supported on all DBAPIs. It is known to work on psycopg2 and not pg8000.
Members
Class signature
class
sqlalchemy.dialects.postgresql.UUID
(sqlalchemy.types.TypeEngine
)-
method
sqlalchemy.dialects.postgresql.UUID.
__init__(as_uuid=False)¶ Construct a UUID type.
- Parameters:
as_uuid=False – if True, values will be interpreted as Python uuid objects, converting to/from string via the DBAPI.
-
method
Range Types¶
The new range column types found in PostgreSQL 9.2 onwards are catered for by the following types:
Object Name | Description |
---|---|
Represent the PostgreSQL DATERANGE type. |
|
Represent the PostgreSQL INT4RANGE type. |
|
Represent the PostgreSQL INT8RANGE type. |
|
Represent the PostgreSQL NUMRANGE type. |
|
This mixin provides functionality for the Range Operators
listed in Table 9-44 of the postgres documentation for Range
Functions and Operators. It is used by all the range types
provided in the |
|
Represent the PostgreSQL TSRANGE type. |
|
Represent the PostgreSQL TSTZRANGE type. |
- class sqlalchemy.dialects.postgresql.INT4RANGE¶
Represent the PostgreSQL INT4RANGE type.
- class sqlalchemy.dialects.postgresql.INT8RANGE¶
Represent the PostgreSQL INT8RANGE type.
- class sqlalchemy.dialects.postgresql.NUMRANGE¶
Represent the PostgreSQL NUMRANGE type.
- class sqlalchemy.dialects.postgresql.DATERANGE¶
Represent the PostgreSQL DATERANGE type.
- class sqlalchemy.dialects.postgresql.TSRANGE¶
Represent the PostgreSQL TSRANGE type.
- class sqlalchemy.dialects.postgresql.TSTZRANGE¶
Represent the PostgreSQL TSTZRANGE type.
The types above get most of their functionality from the following mixin:
- class sqlalchemy.dialects.postgresql.ranges.RangeOperators¶
This mixin provides functionality for the Range Operators listed in Table 9-44 of the postgres documentation for Range Functions and Operators. It is used by all the range types provided in the
postgres
dialect and can likely be used for any range types you create yourself.Members
__ne__(), adjacent_to(), contained_by(), contains(), not_extend_left_of(), not_extend_right_of(), overlaps(), strictly_left_of(), strictly_right_of()
No extra support is provided for the Range Functions listed in Table 9-45 of the postgres documentation. For these, the normal
func()
object should be used.- class comparator_factory(expr)¶
Define comparison operations for range types.
Class signature
class
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory
(sqlalchemy.types.Comparator
)-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
__ne__(other)¶ Boolean expression. Returns true if two ranges are not equal
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
adjacent_to(other)¶ Boolean expression. Returns true if the range in the column is adjacent to the range in the operand.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
contained_by(other)¶ Boolean expression. Returns true if the column is contained within the right hand operand.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
contains(other, **kw)¶ Boolean expression. Returns true if the right hand operand, which can be an element or a range, is contained within the column.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
not_extend_left_of(other)¶ Boolean expression. Returns true if the range in the column does not extend left of the range in the operand.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
not_extend_right_of(other)¶ Boolean expression. Returns true if the range in the column does not extend right of the range in the operand.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
overlaps(other)¶ Boolean expression. Returns true if the column overlaps (has points in common with) the right hand operand.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
strictly_left_of(other)¶ Boolean expression. Returns true if the column is strictly left of the right hand operand.
-
method
sqlalchemy.dialects.postgresql.ranges.RangeOperators.comparator_factory.
strictly_right_of(other)¶ Boolean expression. Returns true if the column is strictly right of the right hand operand.
-
method
Warning
The range type DDL support should work with any PostgreSQL DBAPI
driver, however the data types returned may vary. If you are using
psycopg2
, it’s recommended to upgrade to version 2.5 or later
before using these column types.
When instantiating models that use these column types, you should pass
whatever data type is expected by the DBAPI driver you’re using for
the column type. For psycopg2
these are
psycopg2.extras.NumericRange
,
psycopg2.extras.DateRange
,
psycopg2.extras.DateTimeRange
and
psycopg2.extras.DateTimeTZRange
or the class you’ve
registered with psycopg2.extras.register_range
.
For example:
from psycopg2.extras import DateTimeRange
from sqlalchemy.dialects.postgresql import TSRANGE
class RoomBooking(Base):
__tablename__ = 'room_booking'
room = Column(Integer(), primary_key=True)
during = Column(TSRANGE())
booking = RoomBooking(
room=101,
during=DateTimeRange(datetime(2013, 3, 23), None)
)
PostgreSQL Constraint Types¶
SQLAlchemy supports PostgreSQL EXCLUDE constraints via the
ExcludeConstraint
class:
Object Name | Description |
---|---|
A table-level EXCLUDE constraint. |
- class sqlalchemy.dialects.postgresql.ExcludeConstraint(*elements, **kw)¶
A table-level EXCLUDE constraint.
Defines an EXCLUDE constraint as described in the postgres documentation.
Members
Class signature
class
sqlalchemy.dialects.postgresql.ExcludeConstraint
(sqlalchemy.schema.ColumnCollectionConstraint
)-
method
sqlalchemy.dialects.postgresql.ExcludeConstraint.
__init__(*elements, **kw)¶ Create an
ExcludeConstraint
object.E.g.:
const = ExcludeConstraint( (Column('period'), '&&'), (Column('group'), '='), where=(Column('group') != 'some group'), ops={'group': 'my_operator_class'} )
The constraint is normally embedded into the
Table
construct directly, or added later usingappend_constraint()
:some_table = Table( 'some_table', metadata, Column('id', Integer, primary_key=True), Column('period', TSRANGE()), Column('group', String) ) some_table.append_constraint( ExcludeConstraint( (some_table.c.period, '&&'), (some_table.c.group, '='), where=some_table.c.group != 'some group', name='some_table_excl_const', ops={'group': 'my_operator_class'} ) )
- Parameters:
*elements – A sequence of two tuples of the form
(column, operator)
where “column” is a SQL expression element or a raw SQL string, most typically aColumn
object, and “operator” is a string containing the operator to use. In order to specify a column name when aColumn
object is not available, while ensuring that any necessary quoting rules take effect, an ad-hocColumn
orcolumn()
object should be used.name – Optional, the in-database name of this constraint.
deferrable – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when issuing DDL for this constraint.
initially – Optional string. If set, emit INITIALLY <value> when issuing DDL for this constraint.
using – Optional string. If set, emit USING <index_method> when issuing DDL for this constraint. Defaults to ‘gist’.
where –
Optional SQL expression construct or literal SQL string. If set, emit WHERE <predicate> when issuing DDL for this constraint.
Warning
The
ExcludeConstraint.where
argument toExcludeConstraint
can be passed as a Python string argument, which will be treated as trusted SQL text and rendered as given. DO NOT PASS UNTRUSTED INPUT TO THIS PARAMETER.ops –
Optional dictionary. Used to define operator classes for the elements; works the same way as that of the postgresql_ops parameter specified to the
Index
construct.New in version 1.3.21.
See also
Operator Classes - general description of how PostgreSQL operator classes are specified.
-
method
For example:
from sqlalchemy.dialects.postgresql import ExcludeConstraint, TSRANGE
class RoomBooking(Base):
__tablename__ = 'room_booking'
room = Column(Integer(), primary_key=True)
during = Column(TSRANGE())
__table_args__ = (
ExcludeConstraint(('room', '='), ('during', '&&')),
)
PostgreSQL DML Constructs¶
Object Name | Description |
---|---|
insert(table[, values, inline, bind, ...], **dialect_kw) |
Construct an |
PostgreSQL-specific implementation of INSERT. |
- function sqlalchemy.dialects.postgresql.insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)¶
Construct an
Insert
object.This documentation is inherited from
sqlalchemy.sql.expression.insert()
; this constructor,sqlalchemy.dialects.postgresql.insert()
, creates asqlalchemy.dialects.postgresql.Insert
object. See that class for additional details describing this subclass.Similar functionality is available via the
TableClause.insert()
method onTable
.- Parameters:
table –
TableClause
which is the subject of the insert.values – collection of values to be inserted; see
Insert.values()
for a description of allowed formats here. Can be omitted entirely; aInsert
construct will also dynamically render the VALUES clause at execution time based on the parameters passed toConnection.execute()
.inline – if True, no attempt will be made to retrieve the SQL-generated default values to be provided within the statement; in particular, this allows SQL expressions to be rendered ‘inline’ within the statement without the need to pre-execute them beforehand; for backends that support “returning”, this turns off the “implicit returning” feature for the statement.
If both values and compile-time bind parameters are present, the compile-time bind parameters override the information specified within values on a per-key basis.
The keys within values can be either
Column
objects or their string identifiers. Each key may reference one of:a literal data value (i.e. string, number, etc.);
a Column object;
a SELECT statement.
If a
SELECT
statement is specified which references thisINSERT
statement’s table, the statement will be correlated against theINSERT
statement.See also
Insert Expressions - SQL Expression Tutorial
Inserts, Updates and Deletes - SQL Expression Tutorial
- class sqlalchemy.dialects.postgresql.Insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)¶
PostgreSQL-specific implementation of INSERT.
Adds methods for PG-specific syntaxes such as ON CONFLICT.
The
Insert
object is created using thesqlalchemy.dialects.postgresql.insert()
function.New in version 1.1.
Class signature
class
sqlalchemy.dialects.postgresql.Insert
(sqlalchemy.sql.expression.Insert
)-
attribute
sqlalchemy.dialects.postgresql.Insert.
excluded¶ Provide the
excluded
namespace for an ON CONFLICT statementPG’s ON CONFLICT clause allows reference to the row that would be inserted, known as
excluded
. This attribute provides all columns in this row to be referenceable.See also
INSERT…ON CONFLICT (Upsert) - example of how to use
Insert.excluded
-
method
sqlalchemy.dialects.postgresql.Insert.
on_conflict_do_nothing(constraint=None, index_elements=None, index_where=None)¶ Specifies a DO NOTHING action for ON CONFLICT clause.
The
constraint
andindex_elements
arguments are optional, but only one of these can be specified.- Parameters:
constraint – The name of a unique or exclusion constraint on the table, or the constraint object itself if it has a .name attribute.
index_elements – A sequence consisting of string column names,
Column
objects, or other column expression objects that will be used to infer a target index.index_where –
Additional WHERE criterion that can be used to infer a conditional target index.
New in version 1.1.
See also
-
method
sqlalchemy.dialects.postgresql.Insert.
on_conflict_do_update(constraint=None, index_elements=None, index_where=None, set_=None, where=None)¶ Specifies a DO UPDATE SET action for ON CONFLICT clause.
Either the
constraint
orindex_elements
argument is required, but only one of these can be specified.- Parameters:
constraint – The name of a unique or exclusion constraint on the table, or the constraint object itself if it has a .name attribute.
index_elements – A sequence consisting of string column names,
Column
objects, or other column expression objects that will be used to infer a target index.index_where – Additional WHERE criterion that can be used to infer a conditional target index.
set_ –
Required argument. A dictionary or other mapping object with column names as keys and expressions or literals as values, specifying the
SET
actions to take. If the targetColumn
specifies a “. key” attribute distinct from the column name, that key should be used.Warning
This dictionary does not take into account Python-specified default UPDATE values or generation functions, e.g. those specified using
Column.onupdate
. These values will not be exercised for an ON CONFLICT style of UPDATE, unless they are manually specified in theInsert.on_conflict_do_update.set_
dictionary.where –
Optional argument. If present, can be a literal SQL string or an acceptable expression for a
WHERE
clause that restricts the rows affected byDO UPDATE SET
. Rows not meeting theWHERE
condition will not be updated (effectively aDO NOTHING
for those rows).New in version 1.1.
See also
-
attribute
psycopg2¶
Support for the PostgreSQL database via the psycopg2 driver.
DBAPI¶
Documentation and download information (if applicable) for psycopg2 is available at: http://pypi.python.org/pypi/psycopg2/
Connecting¶
Connect String:
postgresql+psycopg2://user:password@host:port/dbname[?key=value&key=value...]
psycopg2 Connect Arguments¶
psycopg2-specific keyword arguments which are accepted by
create_engine()
are:
server_side_cursors
: Enable the usage of “server side cursors” for SQL statements which support this feature. What this essentially means from a psycopg2 point of view is that the cursor is created using a name, e.g.connection.cursor('some name')
, which has the effect that result rows are not immediately pre-fetched and buffered after statement execution, but are instead left on the server and only retrieved as needed. SQLAlchemy’sResultProxy
uses special row-buffering behavior when this feature is enabled, such that groups of 100 rows at a time are fetched over the wire to reduce conversational overhead. Note that theConnection.execution_options.stream_results
execution option is a more targeted way of enabling this mode on a per-execution basis.use_native_unicode
: Enable the usage of Psycopg2 “native unicode” mode per connection. True by default.See also
isolation_level
: This option, available for all PostgreSQL dialects, includes theAUTOCOMMIT
isolation level when using the psycopg2 dialect.See also
client_encoding
: sets the client encoding in a libpq-agnostic way, using psycopg2’sset_client_encoding()
method.See also
executemany_mode
,executemany_batch_page_size
,executemany_values_page_size
: Allows use of psycopg2 extensions for optimizing “executemany”-stye queries. See the referenced section below for details.See also
use_batch_mode
: this is the previous setting used to affect “executemany” mode and is now deprecated.
Unix Domain Connections¶
psycopg2 supports connecting via Unix domain connections. When the host
portion of the URL is omitted, SQLAlchemy passes None
to psycopg2,
which specifies Unix-domain communication rather than TCP/IP communication:
create_engine("postgresql+psycopg2://user:password@/dbname")
By default, the socket file used is to connect to a Unix-domain socket
in /tmp
, or whatever socket directory was specified when PostgreSQL
was built. This value can be overridden by passing a pathname to psycopg2,
using host
as an additional keyword argument:
create_engine("postgresql+psycopg2://user:password@/dbname?host=/var/lib/postgresql")
See also
Specfiying multiple fallback hosts¶
psycopg2 supports multiple connection points in the connection string.
When the host
parameter is used multiple times in the query section of
the URL, SQLAlchemy will create a single string of the host and port
information provided to make the connections:
create_engine(
"postgresql+psycopg2://user:password@/dbname?host=HostA:port1&host=HostB&host=HostC"
)
A connection to each host is then attempted until either a connection is successful or all connections are unsuccessful in which case an error is raised.
New in version 1.3.20: Support for multiple hosts in PostgreSQL connection string.
See also
Empty DSN Connections / Environment Variable Connections¶
The psycopg2 DBAPI can connect to PostgreSQL by passing an empty DSN to the
libpq client library, which by default indicates to connect to a localhost
PostgreSQL database that is open for “trust” connections. This behavior can be
further tailored using a particular set of environment variables which are
prefixed with PG_...
, which are consumed by libpq
to take the place of
any or all elements of the connection string.
For this form, the URL can be passed without any elements other than the initial scheme:
engine = create_engine('postgresql+psycopg2://')
In the above form, a blank “dsn” string is passed to the psycopg2.connect()
function which in turn represents an empty DSN passed to libpq.
New in version 1.3.2: support for parameter-less connections with psycopg2.
See also
Environment Variables -
PostgreSQL documentation on how to use PG_...
environment variables for connections.
Per-Statement/Connection Execution Options¶
The following DBAPI-specific options are respected when used with
Connection.execution_options()
,
Executable.execution_options()
,
Query.execution_options()
,
in addition to those not specific to DBAPIs:
isolation_level
- Set the transaction isolation level for the lifespan of aConnection
(can only be set on a connection, not a statement or query). See Psycopg2 Transaction Isolation Level.stream_results
- Enable or disable usage of psycopg2 server side cursors - this feature makes use of “named” cursors in combination with special result handling methods so that result rows are not fully buffered. IfNone
or not set, theserver_side_cursors
option of theEngine
is used.max_row_buffer
- when usingstream_results
, an integer value that specifies the maximum number of rows to buffer at a time. This is interpreted by theBufferedRowResultProxy
, and if omitted the buffer will grow to ultimately store 1000 rows at a time.New in version 1.0.6.
Psycopg2 Fast Execution Helpers¶
Modern versions of psycopg2 include a feature known as
Fast Execution Helpers , which
have been shown in benchmarking to improve psycopg2’s executemany()
performance, primarily with INSERT statements, by multiple orders of magnitude.
SQLAlchemy allows this extension to be used for all executemany()
style
calls invoked by an Engine
when used with multiple parameter
sets, which includes the use of this feature both by the
Core as well as by the ORM for inserts of objects with non-autogenerated
primary key values, by adding the executemany_mode
flag to
create_engine()
:
engine = create_engine(
"postgresql+psycopg2://scott:tiger@host/dbname",
executemany_mode='batch')
Changed in version 1.3.7: - the use_batch_mode
flag has been superseded
by a new parameter executemany_mode
which provides support both for
psycopg2’s execute_batch
helper as well as the execute_values
helper.
Possible options for executemany_mode
include:
None
- By default, psycopg2’s extensions are not used, and the usualcursor.executemany()
method is used when invoking batches of statements.'batch'
- Usespsycopg2.extras.execute_batch
so that multiple copies of a SQL query, each one corresponding to a parameter set passed toexecutemany()
, are joined into a single SQL string separated by a semicolon. This is the same behavior as was provided by theuse_batch_mode=True
flag.'values'
- For Coreinsert()
constructs only (including those emitted by the ORM automatically), thepsycopg2.extras.execute_values
extension is used so that multiple parameter sets are grouped into a single INSERT statement and joined together with multiple VALUES expressions. This method requires that the string text of the VALUES clause inside the INSERT statement is manipulated, so is only supported with a compiledinsert()
construct where the format is predictable. For all other constructs, including plain textual INSERT statements not rendered by the SQLAlchemy expression language compiler, thepsycopg2.extras.execute_batch
method is used. It is therefore important to note that “values” mode implies that “batch” mode is also used for all statements for which “values” mode does not apply.
For both strategies, the executemany_batch_page_size
and
executemany_values_page_size
arguments control how many parameter sets
should be represented in each execution. Because “values” mode implies a
fallback down to “batch” mode for non-INSERT statements, there are two
independent page size arguments. For each, the default value of None
means
to use psycopg2’s defaults, which at the time of this writing are quite low at
100. For the execute_values
method, a number as high as 10000 may prove
to be performant, whereas for execute_batch
, as the number represents
full statements repeated, a number closer to the default of 100 is likely
more appropriate:
engine = create_engine(
"postgresql+psycopg2://scott:tiger@host/dbname",
executemany_mode='values',
executemany_values_page_size=10000, executemany_batch_page_size=500)
See also
Executing Multiple Statements - General information on using the
Connection
object to execute statements in such a way as to make
use of the DBAPI .executemany()
method.
Changed in version 1.3.7: - Added support for
psycopg2.extras.execute_values
. The use_batch_mode
flag is
superseded by the executemany_mode
flag.
Unicode with Psycopg2¶
By default, the psycopg2 driver uses the psycopg2.extensions.UNICODE
extension, such that the DBAPI receives and returns all strings as Python
Unicode objects directly - SQLAlchemy passes these values through without
change. Psycopg2 here will encode/decode string values based on the
current “client encoding” setting; by default this is the value in
the postgresql.conf
file, which often defaults to SQL_ASCII
.
Typically, this can be changed to utf8
, as a more useful default:
# postgresql.conf file
# client_encoding = sql_ascii # actually, defaults to database
# encoding
client_encoding = utf8
A second way to affect the client encoding is to set it within Psycopg2
locally. SQLAlchemy will call psycopg2’s
psycopg2:connection.set_client_encoding()
method
on all new connections based on the value passed to
create_engine()
using the client_encoding
parameter:
# set_client_encoding() setting;
# works for *all* PostgreSQL versions
engine = create_engine("postgresql://user:pass@host/dbname",
client_encoding='utf8')
This overrides the encoding specified in the PostgreSQL client configuration.
When using the parameter in this way, the psycopg2 driver emits
SET client_encoding TO 'utf8'
on the connection explicitly, and works
in all PostgreSQL versions.
Note that the client_encoding
setting as passed to
create_engine()
is not the same as the more recently added client_encoding
parameter
now supported by libpq directly. This is enabled when client_encoding
is passed directly to psycopg2.connect()
, and from SQLAlchemy is passed
using the create_engine.connect_args
parameter:
engine = create_engine(
"postgresql://user:pass@host/dbname",
connect_args={'client_encoding': 'utf8'})
# using the query string is equivalent
engine = create_engine("postgresql://user:pass@host/dbname?client_encoding=utf8")
The above parameter was only added to libpq as of version 9.1 of PostgreSQL, so using the previous method is better for cross-version support.
Disabling Native Unicode¶
SQLAlchemy can also be instructed to skip the usage of the psycopg2
UNICODE
extension and to instead utilize its own unicode encode/decode
services, which are normally reserved only for those DBAPIs that don’t
fully support unicode directly. Passing use_native_unicode=False
to
create_engine()
will disable usage of psycopg2.extensions.
UNICODE
.
SQLAlchemy will instead encode data itself into Python bytestrings on the way
in and coerce from bytes on the way back,
using the value of the create_engine()
encoding
parameter, which
defaults to utf-8
.
SQLAlchemy’s own unicode encode/decode functionality is steadily becoming
obsolete as most DBAPIs now support unicode fully.
Bound Parameter Styles¶
The default parameter style for the psycopg2 dialect is “pyformat”, where
SQL is rendered using %(paramname)s
style. This format has the limitation
that it does not accommodate the unusual case of parameter names that
actually contain percent or parenthesis symbols; as SQLAlchemy in many cases
generates bound parameter names based on the name of a column, the presence
of these characters in a column name can lead to problems.
There are two solutions to the issue of a Column
that contains
one of these characters in its name. One is to specify the
Column.key
for columns that have such names:
measurement = Table('measurement', metadata,
Column('Size (meters)', Integer, key='size_meters')
)
Above, an INSERT statement such as measurement.insert()
will use
size_meters
as the parameter name, and a SQL expression such as
measurement.c.size_meters > 10
will derive the bound parameter name
from the size_meters
key as well.
Changed in version 1.0.0: - SQL expressions will use
Column.key
as the source of naming when anonymous bound parameters are created
in SQL expressions; previously, this behavior only applied to
Table.insert()
and Table.update()
parameter names.
The other solution is to use a positional format; psycopg2 allows use of the
“format” paramstyle, which can be passed to
create_engine.paramstyle
:
engine = create_engine(
'postgresql://scott:tiger@localhost:5432/test', paramstyle='format')
With the above engine, instead of a statement like:
INSERT INTO measurement ("Size (meters)") VALUES (%(Size (meters))s)
{'Size (meters)': 1}
we instead see:
INSERT INTO measurement ("Size (meters)") VALUES (%s)
(1, )
Where above, the dictionary style is converted into a tuple with positional style.
Transactions¶
The psycopg2 dialect fully supports SAVEPOINT and two-phase commit operations.
Psycopg2 Transaction Isolation Level¶
As discussed in Transaction Isolation Level,
all PostgreSQL dialects support setting of transaction isolation level
both via the isolation_level
parameter passed to create_engine()
,
as well as the isolation_level
argument used by
Connection.execution_options()
. When using the psycopg2 dialect
, these
options make use of psycopg2’s set_isolation_level()
connection method,
rather than emitting a PostgreSQL directive; this is because psycopg2’s
API-level setting is always emitted at the start of each transaction in any
case.
The psycopg2 dialect supports these constants for isolation level:
READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE
AUTOCOMMIT
NOTICE logging¶
The psycopg2 dialect will log PostgreSQL NOTICE messages
via the sqlalchemy.dialects.postgresql
logger. When this logger
is set to the logging.INFO
level, notice messages will be logged:
import logging
logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO)
Above, it is assumed that logging is configured externally. If this is not
the case, configuration such as logging.basicConfig()
must be utilized:
import logging
logging.basicConfig() # log messages to stdout
logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO)
See also
Logging HOWTO - on the python.org website
HSTORE type¶
The psycopg2
DBAPI includes an extension to natively handle marshalling of
the HSTORE type. The SQLAlchemy psycopg2 dialect will enable this extension
by default when psycopg2 version 2.4 or greater is used, and
it is detected that the target database has the HSTORE type set up for use.
In other words, when the dialect makes the first
connection, a sequence like the following is performed:
Request the available HSTORE oids using
psycopg2.extras.HstoreAdapter.get_oids()
. If this function returns a list of HSTORE identifiers, we then determine that theHSTORE
extension is present. This function is skipped if the version of psycopg2 installed is less than version 2.4.If the
use_native_hstore
flag is at its default ofTrue
, and we’ve detected thatHSTORE
oids are available, thepsycopg2.extensions.register_hstore()
extension is invoked for all connections.
The register_hstore()
extension has the effect of all Python
dictionaries being accepted as parameters regardless of the type of target
column in SQL. The dictionaries are converted by this extension into a
textual HSTORE expression. If this behavior is not desired, disable the
use of the hstore extension by setting use_native_hstore
to False
as
follows:
engine = create_engine("postgresql+psycopg2://scott:tiger@localhost/test",
use_native_hstore=False)
The HSTORE
type is still supported when the
psycopg2.extensions.register_hstore()
extension is not used. It merely
means that the coercion between Python dictionaries and the HSTORE
string format, on both the parameter side and the result side, will take
place within SQLAlchemy’s own marshalling logic, and not that of psycopg2
which may be more performant.
pg8000¶
Support for the PostgreSQL database via the pg8000 driver.
DBAPI¶
Documentation and download information (if applicable) for pg8000 is available at: https://pythonhosted.org/pg8000/
Connecting¶
Connect String:
postgresql+pg8000://user:password@host:port/dbname[?key=value&key=value...]
Note
The pg8000 dialect is not tested as part of SQLAlchemy’s continuous integration and may have unresolved issues. The recommended PostgreSQL dialect is psycopg2.
Unicode¶
pg8000 will encode / decode string values between it and the server using the
PostgreSQL client_encoding
parameter; by default this is the value in
the postgresql.conf
file, which often defaults to SQL_ASCII
.
Typically, this can be changed to utf-8
, as a more useful default:
#client_encoding = sql_ascii # actually, defaults to database
# encoding
client_encoding = utf8
The client_encoding
can be overridden for a session by executing the SQL:
SET CLIENT_ENCODING TO ‘utf8’;
SQLAlchemy will execute this SQL on all new connections based on the value
passed to create_engine()
using the client_encoding
parameter:
engine = create_engine(
"postgresql+pg8000://user:pass@host/dbname", client_encoding='utf8')
pg8000 Transaction Isolation Level¶
The pg8000 dialect offers the same isolation level settings as that of the psycopg2 dialect:
READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE
AUTOCOMMIT
New in version 0.9.5: support for AUTOCOMMIT isolation level when using pg8000.
psycopg2cffi¶
Support for the PostgreSQL database via the psycopg2cffi driver.
DBAPI¶
Documentation and download information (if applicable) for psycopg2cffi is available at: http://pypi.python.org/pypi/psycopg2cffi/
Connecting¶
Connect String:
postgresql+psycopg2cffi://user:password@host:port/dbname[?key=value&key=value...]
psycopg2cffi
is an adaptation of psycopg2
, using CFFI for the C
layer. This makes it suitable for use in e.g. PyPy. Documentation
is as per psycopg2
.
New in version 1.0.0.
py-postgresql¶
Support for the PostgreSQL database via the py-postgresql driver.
DBAPI¶
Documentation and download information (if applicable) for py-postgresql is available at: http://python.projects.pgfoundry.org/
Connecting¶
Connect String:
postgresql+pypostgresql://user:password@host:port/dbname[?key=value&key=value...]
Note
The pypostgresql dialect is not tested as part of SQLAlchemy’s continuous integration and may have unresolved issues. The recommended PostgreSQL driver is psycopg2.
pygresql¶
Support for the PostgreSQL database via the pygresql driver.
DBAPI¶
Documentation and download information (if applicable) for pygresql is available at: http://www.pygresql.org/
Connecting¶
Connect String:
postgresql+pygresql://user:password@host:port/dbname[?key=value&key=value...]
Note
The pygresql dialect is not tested as part of SQLAlchemy’s continuous integration and may have unresolved issues. The recommended PostgreSQL dialect is psycopg2.
zxjdbc¶
Support for the PostgreSQL database via the zxJDBC for Jython driver.
DBAPI¶
Drivers for this database are available at: http://jdbc.postgresql.org/
Connecting¶
Connect String:
postgresql+zxjdbc://scott:tiger@localhost/db