statsmodels.distributions.copula.api.ExtremeValueCopula¶
- class statsmodels.distributions.copula.api.ExtremeValueCopula(transform, args=(), k_dim=2)[source]¶
Extreme value copula constructed from Pickand’s dependence function.
Currently only bivariate copulas are available.
- Parameters:¶
- transform: instance of transformation class
Pickand’s dependence function with required methods including first and second derivatives
- args
tuple Optional copula parameters. Copula parameters can be either provided when creating the instance or as arguments when calling methods.
- k_dim
int Currently only bivariate extreme value copulas are supported.
See also
dep_func_ev
Notes
currently the following dependence function and copulas are available
AsymLogistic
AsymNegLogistic
AsymMixed
HR
TEV and AsymBiLogistic currently do not have required derivatives for pdf.
Methods
cdf(u[, args])Evaluate cdf of bivariate extreme value copula.
conditional_2g1(u[, args])conditional distribution
fit_corr_param(data)Copula correlation parameter using Kendall's tau of sample data.
logpdf(u[, args])Evaluate log-pdf of bivariate extreme value copula.
pdf(u[, args])Evaluate pdf of bivariate extreme value copula.
plot_pdf([ticks_nbr, ax])Plot the PDF.
plot_scatter([sample, nobs, random_state, ax])Sample the copula and plot.
rvs([nobs, args, random_state])Draw n in the half-open interval
[0, 1).tau_simulated([nobs, random_state])Kendall's tau based on simulated samples.