statsmodels.genmod.families.family.Binomial¶
- class statsmodels.genmod.families.family.Binomial(link=None, check_link=True)[source]¶
Binomial exponential family distribution.
- Parameters:¶
- link
alinkinstance,optional The default link for the Binomial family is the logit link. Available links are logit, probit, cauchy, log, loglog, and cloglog. See statsmodels.genmod.families.links for more information.
- check_linkbool
If True (default), then and exception is raised if the link is invalid for the family. If False, then the link is not checked.
- link
See also
statsmodels.genmod.families.family.FamilyParent class for all links.
- Link Functions
Further details on links.
Notes
endog for Binomial can be specified in one of three ways: A 1d array of 0 or 1 values, indicating failure or success respectively. A 2d array, with two columns. The first column represents the success count and the second column represents the failure count. A 1d array of proportions, indicating the proportion of successes, with parameter var_weights containing the number of trials for each row.
- Attributes:¶
- Binomial.link
alinkinstance The link function of the Binomial instance
- Binomial.variance
varfuncinstance varianceis an instance of statsmodels.genmod.families.varfuncs.binary
- Binomial.link
Methods
Methods
deviance(endog, mu[, var_weights, ...])The deviance function evaluated at (endog, mu, var_weights, freq_weights, scale) for the distribution.
fitted(lin_pred)Fitted values based on linear predictors lin_pred.
get_distribution(mu[, scale, var_weights, ...])Frozen Binomial distribution instance for given parameters
initialize(endog, freq_weights)Initialize the response variable.
loglike(endog, mu[, var_weights, ...])The log-likelihood function in terms of the fitted mean response.
loglike_obs(endog, mu[, var_weights, scale])The log-likelihood function for each observation in terms of the fitted mean response for the Binomial distribution.
predict(mu)Linear predictors based on given mu values.
resid_anscombe(endog, mu[, var_weights, scale])The Anscombe residuals
resid_dev(endog, mu[, var_weights, scale])The deviance residuals
starting_mu(y)The starting values for the IRLS algorithm for the Binomial family.
weights(mu)Weights for IRLS steps
Properties
Link function for family